vipinbansal179 commited on
Commit
099c51d
1 Parent(s): bf38a0c

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,967 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: 'pay rs.20.00 / c 91xx3402 ganeshramkudisodebur 22 - 09 - 2023 . ref:3648483126
12
+ . query ? click http://m.paytm.me/care : ppbl'
13
+ - text: inform m / s shree salasar balaji tex transfer rs . 10000.00 account . xxxxxxxx2869
14
+ yes bank account rtgs / neft / imp
15
+ - text: undelivered!\nyour hdfc bank debit card 9875 / c 8494\nreason ch shift . case
16
+ address change , update seamless card delivery > > hdfcbk.io/a/0nzoo052
17
+ - text: rs 5000.00 debit / c upi 23 - 09 - 2023 14:21:12 vpa 35890012004230@cnrb -
18
+ ( upi ref 363290511260)-federal bank
19
+ - text: 472448 otp set hdfc bank 4 digit login pin . share otp you?call 18002586161
20
+ pipeline_tag: text-classification
21
+ inference: true
22
+ base_model: sentence-transformers/all-mpnet-base-v2
23
+ model-index:
24
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.9715909090909091
36
+ name: Accuracy
37
  ---
38
+
39
+ # SetFit with sentence-transformers/all-mpnet-base-v2
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 384 tokens
55
+ - **Number of Classes:** 3 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 2 | <ul><li>'840989 otp proceed canara bank mobile banking . valid 15 minute . share otp . - canara bank . kbl8a1ju0mt'</li><li>'cheque . 000102 issue riya collection rs . 12,000.00 present / c xxxxx546157 return unpaid insufficient fund . team idfc bank'</li><li>'avl bal / c xxxx0959 10 - jul-2022 06:06:24 inr 0.00 . combine avl bal inr 0.00 . use mb app track / c - kotak bank'</li></ul> |
70
+ | 0 | <ul><li>'/ c . xxxxxxxx7146 debit rs.11933.00 16 - 09 - 23 / c xxxxxxxx4716 credit ( imp ref 325908759095 ) . warm regard , yes bank'</li><li>'send rs.290.00 kotak bank ac x4524 bharatpe90727843812@yesbankltd 13-10-23.upi ref 328684167136 . , kotak.com/fraud'</li><li>'rs.295 transfer / c ... 4322 : lien_marking_fo . total bal : rs.188.8cr . avlbl amt : rs.609.97(28 - 06 - 2022 16:39:53 ) - bank baroda'</li></ul> |
71
+ | 1 | <ul><li>'rs 15000credite / c xx4524via neft neofirst technology india private- utr ref hsbcn23276508097 ; avail . bal.:rs 215180.62kotak bank'</li><li>'/ c : xx6775 credit rs.60.00 14 - 11 - 2023 10:47:49 upi - id 8733076955@omni ( upi ref 331800008439).-canara bank'</li><li>'rs.28 credit / c ... 7783 upi/323962847509 kiwicashback_ax . total bal : rs.122751.36cr . avlbl amt : rs.94671.36(27 - 08 - 2023 15:37:01 ) - bank baroda'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.9716 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("vipinbansal179/SetFit_sms_Analyzer1")
97
+ # Run inference
98
+ preds = model("472448 otp set hdfc bank 4 digit login pin . share otp you?call 18002586161")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:-------|:----|
130
+ | Word count | 4 | 23.17 | 65 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0 | 231 |
135
+ | 1 | 131 |
136
+ | 2 | 338 |
137
+
138
+ ### Training Hyperparameters
139
+ - batch_size: (16, 16)
140
+ - num_epochs: (2, 2)
141
+ - max_steps: -1
142
+ - sampling_strategy: oversampling
143
+ - body_learning_rate: (2e-05, 1e-05)
144
+ - head_learning_rate: 0.01
145
+ - loss: CosineSimilarityLoss
146
+ - distance_metric: cosine_distance
147
+ - margin: 0.25
148
+ - end_to_end: False
149
+ - use_amp: False
150
+ - warmup_proportion: 0.1
151
+ - seed: 42
152
+ - eval_max_steps: -1
153
+ - load_best_model_at_end: True
154
+
155
+ ### Training Results
156
+ | Epoch | Step | Training Loss | Validation Loss |
157
+ |:-------:|:---------:|:-------------:|:---------------:|
158
+ | 0.0001 | 1 | 0.2945 | - |
159
+ | 0.0026 | 50 | 0.3574 | - |
160
+ | 0.0052 | 100 | 0.2512 | - |
161
+ | 0.0079 | 150 | 0.2319 | - |
162
+ | 0.0105 | 200 | 0.2787 | - |
163
+ | 0.0131 | 250 | 0.2129 | - |
164
+ | 0.0157 | 300 | 0.2189 | - |
165
+ | 0.0183 | 350 | 0.0857 | - |
166
+ | 0.0210 | 400 | 0.0932 | - |
167
+ | 0.0236 | 450 | 0.065 | - |
168
+ | 0.0262 | 500 | 0.0553 | - |
169
+ | 0.0288 | 550 | 0.0674 | - |
170
+ | 0.0314 | 600 | 0.0239 | - |
171
+ | 0.0341 | 650 | 0.0054 | - |
172
+ | 0.0367 | 700 | 0.0025 | - |
173
+ | 0.0393 | 750 | 0.002 | - |
174
+ | 0.0419 | 800 | 0.0007 | - |
175
+ | 0.0446 | 850 | 0.001 | - |
176
+ | 0.0472 | 900 | 0.0008 | - |
177
+ | 0.0498 | 950 | 0.0008 | - |
178
+ | 0.0524 | 1000 | 0.0003 | - |
179
+ | 0.0550 | 1050 | 0.0012 | - |
180
+ | 0.0577 | 1100 | 0.002 | - |
181
+ | 0.0603 | 1150 | 0.0192 | - |
182
+ | 0.0629 | 1200 | 0.0041 | - |
183
+ | 0.0655 | 1250 | 0.0002 | - |
184
+ | 0.0681 | 1300 | 0.0001 | - |
185
+ | 0.0708 | 1350 | 0.0001 | - |
186
+ | 0.0734 | 1400 | 0.0001 | - |
187
+ | 0.0760 | 1450 | 0.0004 | - |
188
+ | 0.0786 | 1500 | 0.0003 | - |
189
+ | 0.0812 | 1550 | 0.0002 | - |
190
+ | 0.0839 | 1600 | 0.0004 | - |
191
+ | 0.0865 | 1650 | 0.0002 | - |
192
+ | 0.0891 | 1700 | 0.0002 | - |
193
+ | 0.0917 | 1750 | 0.0001 | - |
194
+ | 0.0943 | 1800 | 0.0001 | - |
195
+ | 0.0970 | 1850 | 0.0001 | - |
196
+ | 0.0996 | 1900 | 0.0001 | - |
197
+ | 0.1022 | 1950 | 0.0001 | - |
198
+ | 0.1048 | 2000 | 0.0001 | - |
199
+ | 0.1075 | 2050 | 0.0015 | - |
200
+ | 0.1101 | 2100 | 0.0001 | - |
201
+ | 0.1127 | 2150 | 0.0001 | - |
202
+ | 0.1153 | 2200 | 0.0001 | - |
203
+ | 0.1179 | 2250 | 0.0001 | - |
204
+ | 0.1206 | 2300 | 0.0 | - |
205
+ | 0.1232 | 2350 | 0.0001 | - |
206
+ | 0.1258 | 2400 | 0.0 | - |
207
+ | 0.1284 | 2450 | 0.0001 | - |
208
+ | 0.1310 | 2500 | 0.0 | - |
209
+ | 0.1337 | 2550 | 0.0001 | - |
210
+ | 0.1363 | 2600 | 0.0 | - |
211
+ | 0.1389 | 2650 | 0.0001 | - |
212
+ | 0.1415 | 2700 | 0.0 | - |
213
+ | 0.1441 | 2750 | 0.0 | - |
214
+ | 0.1468 | 2800 | 0.0 | - |
215
+ | 0.1494 | 2850 | 0.0 | - |
216
+ | 0.1520 | 2900 | 0.0 | - |
217
+ | 0.1546 | 2950 | 0.0 | - |
218
+ | 0.1572 | 3000 | 0.0 | - |
219
+ | 0.1599 | 3050 | 0.0 | - |
220
+ | 0.1625 | 3100 | 0.0 | - |
221
+ | 0.1651 | 3150 | 0.0 | - |
222
+ | 0.1677 | 3200 | 0.0 | - |
223
+ | 0.1704 | 3250 | 0.0 | - |
224
+ | 0.1730 | 3300 | 0.0 | - |
225
+ | 0.1756 | 3350 | 0.0 | - |
226
+ | 0.1782 | 3400 | 0.0 | - |
227
+ | 0.1808 | 3450 | 0.0 | - |
228
+ | 0.1835 | 3500 | 0.0 | - |
229
+ | 0.1861 | 3550 | 0.0003 | - |
230
+ | 0.1887 | 3600 | 0.0131 | - |
231
+ | 0.1913 | 3650 | 0.0004 | - |
232
+ | 0.1939 | 3700 | 0.0001 | - |
233
+ | 0.1966 | 3750 | 0.0 | - |
234
+ | 0.1992 | 3800 | 0.0001 | - |
235
+ | 0.2018 | 3850 | 0.0002 | - |
236
+ | 0.2044 | 3900 | 0.0 | - |
237
+ | 0.2070 | 3950 | 0.0 | - |
238
+ | 0.2097 | 4000 | 0.0001 | - |
239
+ | 0.2123 | 4050 | 0.0015 | - |
240
+ | 0.2149 | 4100 | 0.0002 | - |
241
+ | 0.2175 | 4150 | 0.0 | - |
242
+ | 0.2201 | 4200 | 0.0 | - |
243
+ | 0.2228 | 4250 | 0.0 | - |
244
+ | 0.2254 | 4300 | 0.0 | - |
245
+ | 0.2280 | 4350 | 0.0 | - |
246
+ | 0.2306 | 4400 | 0.0 | - |
247
+ | 0.2333 | 4450 | 0.0 | - |
248
+ | 0.2359 | 4500 | 0.0 | - |
249
+ | 0.2385 | 4550 | 0.0 | - |
250
+ | 0.2411 | 4600 | 0.0 | - |
251
+ | 0.2437 | 4650 | 0.0 | - |
252
+ | 0.2464 | 4700 | 0.0 | - |
253
+ | 0.2490 | 4750 | 0.0 | - |
254
+ | 0.2516 | 4800 | 0.0 | - |
255
+ | 0.2542 | 4850 | 0.0 | - |
256
+ | 0.2568 | 4900 | 0.0 | - |
257
+ | 0.2595 | 4950 | 0.0 | - |
258
+ | 0.2621 | 5000 | 0.0 | - |
259
+ | 0.2647 | 5050 | 0.0 | - |
260
+ | 0.2673 | 5100 | 0.0 | - |
261
+ | 0.2699 | 5150 | 0.0 | - |
262
+ | 0.2726 | 5200 | 0.0 | - |
263
+ | 0.2752 | 5250 | 0.0 | - |
264
+ | 0.2778 | 5300 | 0.0 | - |
265
+ | 0.2804 | 5350 | 0.0 | - |
266
+ | 0.2830 | 5400 | 0.0 | - |
267
+ | 0.2857 | 5450 | 0.0 | - |
268
+ | 0.2883 | 5500 | 0.0 | - |
269
+ | 0.2909 | 5550 | 0.0 | - |
270
+ | 0.2935 | 5600 | 0.0 | - |
271
+ | 0.2962 | 5650 | 0.0 | - |
272
+ | 0.2988 | 5700 | 0.0 | - |
273
+ | 0.3014 | 5750 | 0.0 | - |
274
+ | 0.3040 | 5800 | 0.0 | - |
275
+ | 0.3066 | 5850 | 0.0 | - |
276
+ | 0.3093 | 5900 | 0.0 | - |
277
+ | 0.3119 | 5950 | 0.0 | - |
278
+ | 0.3145 | 6000 | 0.0 | - |
279
+ | 0.3171 | 6050 | 0.0 | - |
280
+ | 0.3197 | 6100 | 0.0 | - |
281
+ | 0.3224 | 6150 | 0.0 | - |
282
+ | 0.3250 | 6200 | 0.0 | - |
283
+ | 0.3276 | 6250 | 0.0 | - |
284
+ | 0.3302 | 6300 | 0.0 | - |
285
+ | 0.3328 | 6350 | 0.0 | - |
286
+ | 0.3355 | 6400 | 0.0 | - |
287
+ | 0.3381 | 6450 | 0.0 | - |
288
+ | 0.3407 | 6500 | 0.0 | - |
289
+ | 0.3433 | 6550 | 0.0 | - |
290
+ | 0.3459 | 6600 | 0.0 | - |
291
+ | 0.3486 | 6650 | 0.0 | - |
292
+ | 0.3512 | 6700 | 0.0 | - |
293
+ | 0.3538 | 6750 | 0.0 | - |
294
+ | 0.3564 | 6800 | 0.0 | - |
295
+ | 0.3591 | 6850 | 0.0 | - |
296
+ | 0.3617 | 6900 | 0.0 | - |
297
+ | 0.3643 | 6950 | 0.0 | - |
298
+ | 0.3669 | 7000 | 0.0 | - |
299
+ | 0.3695 | 7050 | 0.0 | - |
300
+ | 0.3722 | 7100 | 0.0 | - |
301
+ | 0.3748 | 7150 | 0.0 | - |
302
+ | 0.3774 | 7200 | 0.0 | - |
303
+ | 0.3800 | 7250 | 0.0 | - |
304
+ | 0.3826 | 7300 | 0.0 | - |
305
+ | 0.3853 | 7350 | 0.0 | - |
306
+ | 0.3879 | 7400 | 0.0 | - |
307
+ | 0.3905 | 7450 | 0.0 | - |
308
+ | 0.3931 | 7500 | 0.0 | - |
309
+ | 0.3957 | 7550 | 0.0 | - |
310
+ | 0.3984 | 7600 | 0.0 | - |
311
+ | 0.4010 | 7650 | 0.0 | - |
312
+ | 0.4036 | 7700 | 0.0 | - |
313
+ | 0.4062 | 7750 | 0.0 | - |
314
+ | 0.4088 | 7800 | 0.0 | - |
315
+ | 0.4115 | 7850 | 0.0 | - |
316
+ | 0.4141 | 7900 | 0.0 | - |
317
+ | 0.4167 | 7950 | 0.0 | - |
318
+ | 0.4193 | 8000 | 0.0 | - |
319
+ | 0.4220 | 8050 | 0.0 | - |
320
+ | 0.4246 | 8100 | 0.0 | - |
321
+ | 0.4272 | 8150 | 0.0 | - |
322
+ | 0.4298 | 8200 | 0.0 | - |
323
+ | 0.4324 | 8250 | 0.0 | - |
324
+ | 0.4351 | 8300 | 0.0 | - |
325
+ | 0.4377 | 8350 | 0.0 | - |
326
+ | 0.4403 | 8400 | 0.0 | - |
327
+ | 0.4429 | 8450 | 0.0 | - |
328
+ | 0.4455 | 8500 | 0.0 | - |
329
+ | 0.4482 | 8550 | 0.0 | - |
330
+ | 0.4508 | 8600 | 0.0 | - |
331
+ | 0.4534 | 8650 | 0.0 | - |
332
+ | 0.4560 | 8700 | 0.0 | - |
333
+ | 0.4586 | 8750 | 0.0 | - |
334
+ | 0.4613 | 8800 | 0.0 | - |
335
+ | 0.4639 | 8850 | 0.0 | - |
336
+ | 0.4665 | 8900 | 0.0 | - |
337
+ | 0.4691 | 8950 | 0.0001 | - |
338
+ | 0.4717 | 9000 | 0.0 | - |
339
+ | 0.4744 | 9050 | 0.0 | - |
340
+ | 0.4770 | 9100 | 0.0 | - |
341
+ | 0.4796 | 9150 | 0.0 | - |
342
+ | 0.4822 | 9200 | 0.0 | - |
343
+ | 0.4849 | 9250 | 0.0 | - |
344
+ | 0.4875 | 9300 | 0.0 | - |
345
+ | 0.4901 | 9350 | 0.0 | - |
346
+ | 0.4927 | 9400 | 0.0 | - |
347
+ | 0.4953 | 9450 | 0.0 | - |
348
+ | 0.4980 | 9500 | 0.0 | - |
349
+ | 0.5006 | 9550 | 0.0 | - |
350
+ | 0.5032 | 9600 | 0.0 | - |
351
+ | 0.5058 | 9650 | 0.0 | - |
352
+ | 0.5084 | 9700 | 0.0 | - |
353
+ | 0.5111 | 9750 | 0.0 | - |
354
+ | 0.5137 | 9800 | 0.0 | - |
355
+ | 0.5163 | 9850 | 0.0 | - |
356
+ | 0.5189 | 9900 | 0.0 | - |
357
+ | 0.5215 | 9950 | 0.0 | - |
358
+ | 0.5242 | 10000 | 0.0 | - |
359
+ | 0.5268 | 10050 | 0.0 | - |
360
+ | 0.5294 | 10100 | 0.0 | - |
361
+ | 0.5320 | 10150 | 0.0 | - |
362
+ | 0.5346 | 10200 | 0.0 | - |
363
+ | 0.5373 | 10250 | 0.0 | - |
364
+ | 0.5399 | 10300 | 0.0 | - |
365
+ | 0.5425 | 10350 | 0.0 | - |
366
+ | 0.5451 | 10400 | 0.0 | - |
367
+ | 0.5478 | 10450 | 0.0 | - |
368
+ | 0.5504 | 10500 | 0.0 | - |
369
+ | 0.5530 | 10550 | 0.0 | - |
370
+ | 0.5556 | 10600 | 0.0 | - |
371
+ | 0.5582 | 10650 | 0.0 | - |
372
+ | 0.5609 | 10700 | 0.0 | - |
373
+ | 0.5635 | 10750 | 0.0 | - |
374
+ | 0.5661 | 10800 | 0.0 | - |
375
+ | 0.5687 | 10850 | 0.0 | - |
376
+ | 0.5713 | 10900 | 0.0 | - |
377
+ | 0.5740 | 10950 | 0.0 | - |
378
+ | 0.5766 | 11000 | 0.0 | - |
379
+ | 0.5792 | 11050 | 0.0 | - |
380
+ | 0.5818 | 11100 | 0.0 | - |
381
+ | 0.5844 | 11150 | 0.0 | - |
382
+ | 0.5871 | 11200 | 0.0 | - |
383
+ | 0.5897 | 11250 | 0.0 | - |
384
+ | 0.5923 | 11300 | 0.0 | - |
385
+ | 0.5949 | 11350 | 0.0 | - |
386
+ | 0.5975 | 11400 | 0.0 | - |
387
+ | 0.6002 | 11450 | 0.0 | - |
388
+ | 0.6028 | 11500 | 0.0 | - |
389
+ | 0.6054 | 11550 | 0.0 | - |
390
+ | 0.6080 | 11600 | 0.0 | - |
391
+ | 0.6107 | 11650 | 0.0 | - |
392
+ | 0.6133 | 11700 | 0.0 | - |
393
+ | 0.6159 | 11750 | 0.0 | - |
394
+ | 0.6185 | 11800 | 0.0 | - |
395
+ | 0.6211 | 11850 | 0.0 | - |
396
+ | 0.6238 | 11900 | 0.0 | - |
397
+ | 0.6264 | 11950 | 0.0 | - |
398
+ | 0.6290 | 12000 | 0.0 | - |
399
+ | 0.6316 | 12050 | 0.0 | - |
400
+ | 0.6342 | 12100 | 0.0 | - |
401
+ | 0.6369 | 12150 | 0.0 | - |
402
+ | 0.6395 | 12200 | 0.0 | - |
403
+ | 0.6421 | 12250 | 0.0 | - |
404
+ | 0.6447 | 12300 | 0.0 | - |
405
+ | 0.6473 | 12350 | 0.0 | - |
406
+ | 0.6500 | 12400 | 0.0 | - |
407
+ | 0.6526 | 12450 | 0.0 | - |
408
+ | 0.6552 | 12500 | 0.0 | - |
409
+ | 0.6578 | 12550 | 0.0 | - |
410
+ | 0.6604 | 12600 | 0.0 | - |
411
+ | 0.6631 | 12650 | 0.0 | - |
412
+ | 0.6657 | 12700 | 0.0 | - |
413
+ | 0.6683 | 12750 | 0.0 | - |
414
+ | 0.6709 | 12800 | 0.0 | - |
415
+ | 0.6736 | 12850 | 0.0 | - |
416
+ | 0.6762 | 12900 | 0.0 | - |
417
+ | 0.6788 | 12950 | 0.0 | - |
418
+ | 0.6814 | 13000 | 0.0 | - |
419
+ | 0.6840 | 13050 | 0.0 | - |
420
+ | 0.6867 | 13100 | 0.0 | - |
421
+ | 0.6893 | 13150 | 0.0 | - |
422
+ | 0.6919 | 13200 | 0.0 | - |
423
+ | 0.6945 | 13250 | 0.0 | - |
424
+ | 0.6971 | 13300 | 0.0 | - |
425
+ | 0.6998 | 13350 | 0.0 | - |
426
+ | 0.7024 | 13400 | 0.0 | - |
427
+ | 0.7050 | 13450 | 0.0 | - |
428
+ | 0.7076 | 13500 | 0.0 | - |
429
+ | 0.7102 | 13550 | 0.0 | - |
430
+ | 0.7129 | 13600 | 0.0 | - |
431
+ | 0.7155 | 13650 | 0.0 | - |
432
+ | 0.7181 | 13700 | 0.0 | - |
433
+ | 0.7207 | 13750 | 0.0 | - |
434
+ | 0.7233 | 13800 | 0.0 | - |
435
+ | 0.7260 | 13850 | 0.0 | - |
436
+ | 0.7286 | 13900 | 0.0 | - |
437
+ | 0.7312 | 13950 | 0.0 | - |
438
+ | 0.7338 | 14000 | 0.0 | - |
439
+ | 0.7365 | 14050 | 0.0 | - |
440
+ | 0.7391 | 14100 | 0.0 | - |
441
+ | 0.7417 | 14150 | 0.0 | - |
442
+ | 0.7443 | 14200 | 0.0 | - |
443
+ | 0.7469 | 14250 | 0.0 | - |
444
+ | 0.7496 | 14300 | 0.0 | - |
445
+ | 0.7522 | 14350 | 0.0 | - |
446
+ | 0.7548 | 14400 | 0.0 | - |
447
+ | 0.7574 | 14450 | 0.0 | - |
448
+ | 0.7600 | 14500 | 0.0 | - |
449
+ | 0.7627 | 14550 | 0.0 | - |
450
+ | 0.7653 | 14600 | 0.0 | - |
451
+ | 0.7679 | 14650 | 0.0 | - |
452
+ | 0.7705 | 14700 | 0.0 | - |
453
+ | 0.7731 | 14750 | 0.0 | - |
454
+ | 0.7758 | 14800 | 0.0 | - |
455
+ | 0.7784 | 14850 | 0.0 | - |
456
+ | 0.7810 | 14900 | 0.0 | - |
457
+ | 0.7836 | 14950 | 0.0 | - |
458
+ | 0.7862 | 15000 | 0.0 | - |
459
+ | 0.7889 | 15050 | 0.0 | - |
460
+ | 0.7915 | 15100 | 0.0 | - |
461
+ | 0.7941 | 15150 | 0.0 | - |
462
+ | 0.7967 | 15200 | 0.0 | - |
463
+ | 0.7994 | 15250 | 0.0 | - |
464
+ | 0.8020 | 15300 | 0.0 | - |
465
+ | 0.8046 | 15350 | 0.0 | - |
466
+ | 0.8072 | 15400 | 0.0 | - |
467
+ | 0.8098 | 15450 | 0.0 | - |
468
+ | 0.8125 | 15500 | 0.0 | - |
469
+ | 0.8151 | 15550 | 0.0 | - |
470
+ | 0.8177 | 15600 | 0.0 | - |
471
+ | 0.8203 | 15650 | 0.0 | - |
472
+ | 0.8229 | 15700 | 0.0 | - |
473
+ | 0.8256 | 15750 | 0.0 | - |
474
+ | 0.8282 | 15800 | 0.0 | - |
475
+ | 0.8308 | 15850 | 0.0 | - |
476
+ | 0.8334 | 15900 | 0.0 | - |
477
+ | 0.8360 | 15950 | 0.0 | - |
478
+ | 0.8387 | 16000 | 0.0 | - |
479
+ | 0.8413 | 16050 | 0.0 | - |
480
+ | 0.8439 | 16100 | 0.0 | - |
481
+ | 0.8465 | 16150 | 0.0 | - |
482
+ | 0.8491 | 16200 | 0.0 | - |
483
+ | 0.8518 | 16250 | 0.0 | - |
484
+ | 0.8544 | 16300 | 0.0 | - |
485
+ | 0.8570 | 16350 | 0.0 | - |
486
+ | 0.8596 | 16400 | 0.0 | - |
487
+ | 0.8622 | 16450 | 0.0 | - |
488
+ | 0.8649 | 16500 | 0.0 | - |
489
+ | 0.8675 | 16550 | 0.0 | - |
490
+ | 0.8701 | 16600 | 0.0 | - |
491
+ | 0.8727 | 16650 | 0.0 | - |
492
+ | 0.8754 | 16700 | 0.0 | - |
493
+ | 0.8780 | 16750 | 0.0 | - |
494
+ | 0.8806 | 16800 | 0.0 | - |
495
+ | 0.8832 | 16850 | 0.0 | - |
496
+ | 0.8858 | 16900 | 0.0 | - |
497
+ | 0.8885 | 16950 | 0.0 | - |
498
+ | 0.8911 | 17000 | 0.0 | - |
499
+ | 0.8937 | 17050 | 0.0 | - |
500
+ | 0.8963 | 17100 | 0.0 | - |
501
+ | 0.8989 | 17150 | 0.0 | - |
502
+ | 0.9016 | 17200 | 0.0 | - |
503
+ | 0.9042 | 17250 | 0.0 | - |
504
+ | 0.9068 | 17300 | 0.0 | - |
505
+ | 0.9094 | 17350 | 0.0 | - |
506
+ | 0.9120 | 17400 | 0.0 | - |
507
+ | 0.9147 | 17450 | 0.0 | - |
508
+ | 0.9173 | 17500 | 0.0 | - |
509
+ | 0.9199 | 17550 | 0.0 | - |
510
+ | 0.9225 | 17600 | 0.0 | - |
511
+ | 0.9251 | 17650 | 0.0 | - |
512
+ | 0.9278 | 17700 | 0.0 | - |
513
+ | 0.9304 | 17750 | 0.0 | - |
514
+ | 0.9330 | 17800 | 0.0 | - |
515
+ | 0.9356 | 17850 | 0.0 | - |
516
+ | 0.9383 | 17900 | 0.0 | - |
517
+ | 0.9409 | 17950 | 0.0 | - |
518
+ | 0.9435 | 18000 | 0.0 | - |
519
+ | 0.9461 | 18050 | 0.0 | - |
520
+ | 0.9487 | 18100 | 0.0 | - |
521
+ | 0.9514 | 18150 | 0.0 | - |
522
+ | 0.9540 | 18200 | 0.0 | - |
523
+ | 0.9566 | 18250 | 0.0 | - |
524
+ | 0.9592 | 18300 | 0.0 | - |
525
+ | 0.9618 | 18350 | 0.0 | - |
526
+ | 0.9645 | 18400 | 0.0 | - |
527
+ | 0.9671 | 18450 | 0.0 | - |
528
+ | 0.9697 | 18500 | 0.0 | - |
529
+ | 0.9723 | 18550 | 0.0 | - |
530
+ | 0.9749 | 18600 | 0.0 | - |
531
+ | 0.9776 | 18650 | 0.0 | - |
532
+ | 0.9802 | 18700 | 0.0 | - |
533
+ | 0.9828 | 18750 | 0.0 | - |
534
+ | 0.9854 | 18800 | 0.0 | - |
535
+ | 0.9880 | 18850 | 0.0 | - |
536
+ | 0.9907 | 18900 | 0.0 | - |
537
+ | 0.9933 | 18950 | 0.0 | - |
538
+ | 0.9959 | 19000 | 0.0 | - |
539
+ | 0.9985 | 19050 | 0.0 | - |
540
+ | **1.0** | **19078** | **-** | **0.0437** |
541
+ | 1.0012 | 19100 | 0.0 | - |
542
+ | 1.0038 | 19150 | 0.0 | - |
543
+ | 1.0064 | 19200 | 0.0 | - |
544
+ | 1.0090 | 19250 | 0.0 | - |
545
+ | 1.0116 | 19300 | 0.0 | - |
546
+ | 1.0143 | 19350 | 0.0 | - |
547
+ | 1.0169 | 19400 | 0.0 | - |
548
+ | 1.0195 | 19450 | 0.3698 | - |
549
+ | 1.0221 | 19500 | 0.1546 | - |
550
+ | 1.0247 | 19550 | 0.0179 | - |
551
+ | 1.0274 | 19600 | 0.0004 | - |
552
+ | 1.0300 | 19650 | 0.0005 | - |
553
+ | 1.0326 | 19700 | 0.0 | - |
554
+ | 1.0352 | 19750 | 0.0002 | - |
555
+ | 1.0378 | 19800 | 0.0 | - |
556
+ | 1.0405 | 19850 | 0.0 | - |
557
+ | 1.0431 | 19900 | 0.0 | - |
558
+ | 1.0457 | 19950 | 0.0002 | - |
559
+ | 1.0483 | 20000 | 0.0011 | - |
560
+ | 1.0509 | 20050 | 0.0 | - |
561
+ | 1.0536 | 20100 | 0.0 | - |
562
+ | 1.0562 | 20150 | 0.0 | - |
563
+ | 1.0588 | 20200 | 0.0003 | - |
564
+ | 1.0614 | 20250 | 0.0 | - |
565
+ | 1.0641 | 20300 | 0.0003 | - |
566
+ | 1.0667 | 20350 | 0.0003 | - |
567
+ | 1.0693 | 20400 | 0.0 | - |
568
+ | 1.0719 | 20450 | 0.0 | - |
569
+ | 1.0745 | 20500 | 0.0 | - |
570
+ | 1.0772 | 20550 | 0.0 | - |
571
+ | 1.0798 | 20600 | 0.0 | - |
572
+ | 1.0824 | 20650 | 0.0 | - |
573
+ | 1.0850 | 20700 | 0.0 | - |
574
+ | 1.0876 | 20750 | 0.0 | - |
575
+ | 1.0903 | 20800 | 0.0 | - |
576
+ | 1.0929 | 20850 | 0.0 | - |
577
+ | 1.0955 | 20900 | 0.0 | - |
578
+ | 1.0981 | 20950 | 0.0 | - |
579
+ | 1.1007 | 21000 | 0.0 | - |
580
+ | 1.1034 | 21050 | 0.0 | - |
581
+ | 1.1060 | 21100 | 0.0 | - |
582
+ | 1.1086 | 21150 | 0.0 | - |
583
+ | 1.1112 | 21200 | 0.0 | - |
584
+ | 1.1138 | 21250 | 0.0 | - |
585
+ | 1.1165 | 21300 | 0.0 | - |
586
+ | 1.1191 | 21350 | 0.0 | - |
587
+ | 1.1217 | 21400 | 0.0 | - |
588
+ | 1.1243 | 21450 | 0.0 | - |
589
+ | 1.1270 | 21500 | 0.0 | - |
590
+ | 1.1296 | 21550 | 0.0 | - |
591
+ | 1.1322 | 21600 | 0.0 | - |
592
+ | 1.1348 | 21650 | 0.0 | - |
593
+ | 1.1374 | 21700 | 0.0 | - |
594
+ | 1.1401 | 21750 | 0.0 | - |
595
+ | 1.1427 | 21800 | 0.0 | - |
596
+ | 1.1453 | 21850 | 0.0 | - |
597
+ | 1.1479 | 21900 | 0.0 | - |
598
+ | 1.1505 | 21950 | 0.0 | - |
599
+ | 1.1532 | 22000 | 0.0 | - |
600
+ | 1.1558 | 22050 | 0.0 | - |
601
+ | 1.1584 | 22100 | 0.0 | - |
602
+ | 1.1610 | 22150 | 0.0 | - |
603
+ | 1.1636 | 22200 | 0.0 | - |
604
+ | 1.1663 | 22250 | 0.0 | - |
605
+ | 1.1689 | 22300 | 0.0 | - |
606
+ | 1.1715 | 22350 | 0.0 | - |
607
+ | 1.1741 | 22400 | 0.0 | - |
608
+ | 1.1767 | 22450 | 0.0 | - |
609
+ | 1.1794 | 22500 | 0.0 | - |
610
+ | 1.1820 | 22550 | 0.0 | - |
611
+ | 1.1846 | 22600 | 0.0 | - |
612
+ | 1.1872 | 22650 | 0.0 | - |
613
+ | 1.1899 | 22700 | 0.0 | - |
614
+ | 1.1925 | 22750 | 0.0 | - |
615
+ | 1.1951 | 22800 | 0.0 | - |
616
+ | 1.1977 | 22850 | 0.0 | - |
617
+ | 1.2003 | 22900 | 0.0 | - |
618
+ | 1.2030 | 22950 | 0.0 | - |
619
+ | 1.2056 | 23000 | 0.0 | - |
620
+ | 1.2082 | 23050 | 0.0 | - |
621
+ | 1.2108 | 23100 | 0.0 | - |
622
+ | 1.2134 | 23150 | 0.0 | - |
623
+ | 1.2161 | 23200 | 0.0 | - |
624
+ | 1.2187 | 23250 | 0.0 | - |
625
+ | 1.2213 | 23300 | 0.0 | - |
626
+ | 1.2239 | 23350 | 0.0 | - |
627
+ | 1.2265 | 23400 | 0.0 | - |
628
+ | 1.2292 | 23450 | 0.0 | - |
629
+ | 1.2318 | 23500 | 0.0 | - |
630
+ | 1.2344 | 23550 | 0.0 | - |
631
+ | 1.2370 | 23600 | 0.0 | - |
632
+ | 1.2396 | 23650 | 0.0 | - |
633
+ | 1.2423 | 23700 | 0.0 | - |
634
+ | 1.2449 | 23750 | 0.0 | - |
635
+ | 1.2475 | 23800 | 0.0 | - |
636
+ | 1.2501 | 23850 | 0.0 | - |
637
+ | 1.2528 | 23900 | 0.0 | - |
638
+ | 1.2554 | 23950 | 0.0 | - |
639
+ | 1.2580 | 24000 | 0.0 | - |
640
+ | 1.2606 | 24050 | 0.0 | - |
641
+ | 1.2632 | 24100 | 0.0 | - |
642
+ | 1.2659 | 24150 | 0.0 | - |
643
+ | 1.2685 | 24200 | 0.0 | - |
644
+ | 1.2711 | 24250 | 0.0 | - |
645
+ | 1.2737 | 24300 | 0.0 | - |
646
+ | 1.2763 | 24350 | 0.0 | - |
647
+ | 1.2790 | 24400 | 0.0 | - |
648
+ | 1.2816 | 24450 | 0.0 | - |
649
+ | 1.2842 | 24500 | 0.0 | - |
650
+ | 1.2868 | 24550 | 0.0 | - |
651
+ | 1.2894 | 24600 | 0.0 | - |
652
+ | 1.2921 | 24650 | 0.0 | - |
653
+ | 1.2947 | 24700 | 0.0 | - |
654
+ | 1.2973 | 24750 | 0.0 | - |
655
+ | 1.2999 | 24800 | 0.0 | - |
656
+ | 1.3025 | 24850 | 0.0 | - |
657
+ | 1.3052 | 24900 | 0.0 | - |
658
+ | 1.3078 | 24950 | 0.0 | - |
659
+ | 1.3104 | 25000 | 0.0 | - |
660
+ | 1.3130 | 25050 | 0.0 | - |
661
+ | 1.3157 | 25100 | 0.0 | - |
662
+ | 1.3183 | 25150 | 0.0 | - |
663
+ | 1.3209 | 25200 | 0.0 | - |
664
+ | 1.3235 | 25250 | 0.0 | - |
665
+ | 1.3261 | 25300 | 0.0 | - |
666
+ | 1.3288 | 25350 | 0.0 | - |
667
+ | 1.3314 | 25400 | 0.0 | - |
668
+ | 1.3340 | 25450 | 0.0 | - |
669
+ | 1.3366 | 25500 | 0.0 | - |
670
+ | 1.3392 | 25550 | 0.0 | - |
671
+ | 1.3419 | 25600 | 0.0 | - |
672
+ | 1.3445 | 25650 | 0.0 | - |
673
+ | 1.3471 | 25700 | 0.0 | - |
674
+ | 1.3497 | 25750 | 0.0 | - |
675
+ | 1.3523 | 25800 | 0.0 | - |
676
+ | 1.3550 | 25850 | 0.0 | - |
677
+ | 1.3576 | 25900 | 0.0 | - |
678
+ | 1.3602 | 25950 | 0.0 | - |
679
+ | 1.3628 | 26000 | 0.0 | - |
680
+ | 1.3654 | 26050 | 0.0 | - |
681
+ | 1.3681 | 26100 | 0.0 | - |
682
+ | 1.3707 | 26150 | 0.0 | - |
683
+ | 1.3733 | 26200 | 0.0 | - |
684
+ | 1.3759 | 26250 | 0.0 | - |
685
+ | 1.3786 | 26300 | 0.0 | - |
686
+ | 1.3812 | 26350 | 0.0 | - |
687
+ | 1.3838 | 26400 | 0.0 | - |
688
+ | 1.3864 | 26450 | 0.0 | - |
689
+ | 1.3890 | 26500 | 0.0 | - |
690
+ | 1.3917 | 26550 | 0.0 | - |
691
+ | 1.3943 | 26600 | 0.0 | - |
692
+ | 1.3969 | 26650 | 0.0 | - |
693
+ | 1.3995 | 26700 | 0.0 | - |
694
+ | 1.4021 | 26750 | 0.0 | - |
695
+ | 1.4048 | 26800 | 0.0 | - |
696
+ | 1.4074 | 26850 | 0.0 | - |
697
+ | 1.4100 | 26900 | 0.0 | - |
698
+ | 1.4126 | 26950 | 0.0 | - |
699
+ | 1.4152 | 27000 | 0.0 | - |
700
+ | 1.4179 | 27050 | 0.0 | - |
701
+ | 1.4205 | 27100 | 0.0 | - |
702
+ | 1.4231 | 27150 | 0.0 | - |
703
+ | 1.4257 | 27200 | 0.0 | - |
704
+ | 1.4283 | 27250 | 0.0 | - |
705
+ | 1.4310 | 27300 | 0.0 | - |
706
+ | 1.4336 | 27350 | 0.0 | - |
707
+ | 1.4362 | 27400 | 0.0 | - |
708
+ | 1.4388 | 27450 | 0.0 | - |
709
+ | 1.4415 | 27500 | 0.0 | - |
710
+ | 1.4441 | 27550 | 0.0 | - |
711
+ | 1.4467 | 27600 | 0.0 | - |
712
+ | 1.4493 | 27650 | 0.0 | - |
713
+ | 1.4519 | 27700 | 0.0 | - |
714
+ | 1.4546 | 27750 | 0.0 | - |
715
+ | 1.4572 | 27800 | 0.0 | - |
716
+ | 1.4598 | 27850 | 0.0 | - |
717
+ | 1.4624 | 27900 | 0.0 | - |
718
+ | 1.4650 | 27950 | 0.0 | - |
719
+ | 1.4677 | 28000 | 0.0 | - |
720
+ | 1.4703 | 28050 | 0.0 | - |
721
+ | 1.4729 | 28100 | 0.0 | - |
722
+ | 1.4755 | 28150 | 0.0 | - |
723
+ | 1.4781 | 28200 | 0.0 | - |
724
+ | 1.4808 | 28250 | 0.0 | - |
725
+ | 1.4834 | 28300 | 0.0 | - |
726
+ | 1.4860 | 28350 | 0.0 | - |
727
+ | 1.4886 | 28400 | 0.0 | - |
728
+ | 1.4912 | 28450 | 0.0 | - |
729
+ | 1.4939 | 28500 | 0.0 | - |
730
+ | 1.4965 | 28550 | 0.0 | - |
731
+ | 1.4991 | 28600 | 0.0 | - |
732
+ | 1.5017 | 28650 | 0.0 | - |
733
+ | 1.5044 | 28700 | 0.0 | - |
734
+ | 1.5070 | 28750 | 0.0 | - |
735
+ | 1.5096 | 28800 | 0.0 | - |
736
+ | 1.5122 | 28850 | 0.0 | - |
737
+ | 1.5148 | 28900 | 0.0 | - |
738
+ | 1.5175 | 28950 | 0.0 | - |
739
+ | 1.5201 | 29000 | 0.0 | - |
740
+ | 1.5227 | 29050 | 0.0 | - |
741
+ | 1.5253 | 29100 | 0.0 | - |
742
+ | 1.5279 | 29150 | 0.0 | - |
743
+ | 1.5306 | 29200 | 0.0 | - |
744
+ | 1.5332 | 29250 | 0.0 | - |
745
+ | 1.5358 | 29300 | 0.0 | - |
746
+ | 1.5384 | 29350 | 0.0 | - |
747
+ | 1.5410 | 29400 | 0.0 | - |
748
+ | 1.5437 | 29450 | 0.0 | - |
749
+ | 1.5463 | 29500 | 0.0 | - |
750
+ | 1.5489 | 29550 | 0.0 | - |
751
+ | 1.5515 | 29600 | 0.0 | - |
752
+ | 1.5541 | 29650 | 0.0 | - |
753
+ | 1.5568 | 29700 | 0.0 | - |
754
+ | 1.5594 | 29750 | 0.0 | - |
755
+ | 1.5620 | 29800 | 0.0 | - |
756
+ | 1.5646 | 29850 | 0.0 | - |
757
+ | 1.5673 | 29900 | 0.0 | - |
758
+ | 1.5699 | 29950 | 0.0 | - |
759
+ | 1.5725 | 30000 | 0.0 | - |
760
+ | 1.5751 | 30050 | 0.0 | - |
761
+ | 1.5777 | 30100 | 0.0 | - |
762
+ | 1.5804 | 30150 | 0.0 | - |
763
+ | 1.5830 | 30200 | 0.0 | - |
764
+ | 1.5856 | 30250 | 0.0 | - |
765
+ | 1.5882 | 30300 | 0.0 | - |
766
+ | 1.5908 | 30350 | 0.0 | - |
767
+ | 1.5935 | 30400 | 0.0 | - |
768
+ | 1.5961 | 30450 | 0.0 | - |
769
+ | 1.5987 | 30500 | 0.0 | - |
770
+ | 1.6013 | 30550 | 0.0 | - |
771
+ | 1.6039 | 30600 | 0.0 | - |
772
+ | 1.6066 | 30650 | 0.0 | - |
773
+ | 1.6092 | 30700 | 0.0 | - |
774
+ | 1.6118 | 30750 | 0.0 | - |
775
+ | 1.6144 | 30800 | 0.0 | - |
776
+ | 1.6170 | 30850 | 0.0 | - |
777
+ | 1.6197 | 30900 | 0.0 | - |
778
+ | 1.6223 | 30950 | 0.0 | - |
779
+ | 1.6249 | 31000 | 0.0 | - |
780
+ | 1.6275 | 31050 | 0.0 | - |
781
+ | 1.6301 | 31100 | 0.0 | - |
782
+ | 1.6328 | 31150 | 0.0 | - |
783
+ | 1.6354 | 31200 | 0.0 | - |
784
+ | 1.6380 | 31250 | 0.0 | - |
785
+ | 1.6406 | 31300 | 0.0 | - |
786
+ | 1.6433 | 31350 | 0.0 | - |
787
+ | 1.6459 | 31400 | 0.0 | - |
788
+ | 1.6485 | 31450 | 0.0 | - |
789
+ | 1.6511 | 31500 | 0.0 | - |
790
+ | 1.6537 | 31550 | 0.0 | - |
791
+ | 1.6564 | 31600 | 0.0 | - |
792
+ | 1.6590 | 31650 | 0.0 | - |
793
+ | 1.6616 | 31700 | 0.0 | - |
794
+ | 1.6642 | 31750 | 0.0 | - |
795
+ | 1.6668 | 31800 | 0.0 | - |
796
+ | 1.6695 | 31850 | 0.0 | - |
797
+ | 1.6721 | 31900 | 0.0 | - |
798
+ | 1.6747 | 31950 | 0.0 | - |
799
+ | 1.6773 | 32000 | 0.0 | - |
800
+ | 1.6799 | 32050 | 0.0 | - |
801
+ | 1.6826 | 32100 | 0.0 | - |
802
+ | 1.6852 | 32150 | 0.0 | - |
803
+ | 1.6878 | 32200 | 0.0 | - |
804
+ | 1.6904 | 32250 | 0.0 | - |
805
+ | 1.6930 | 32300 | 0.0 | - |
806
+ | 1.6957 | 32350 | 0.0 | - |
807
+ | 1.6983 | 32400 | 0.0 | - |
808
+ | 1.7009 | 32450 | 0.0 | - |
809
+ | 1.7035 | 32500 | 0.0 | - |
810
+ | 1.7062 | 32550 | 0.0 | - |
811
+ | 1.7088 | 32600 | 0.0 | - |
812
+ | 1.7114 | 32650 | 0.0 | - |
813
+ | 1.7140 | 32700 | 0.0 | - |
814
+ | 1.7166 | 32750 | 0.0 | - |
815
+ | 1.7193 | 32800 | 0.0 | - |
816
+ | 1.7219 | 32850 | 0.0 | - |
817
+ | 1.7245 | 32900 | 0.0 | - |
818
+ | 1.7271 | 32950 | 0.0 | - |
819
+ | 1.7297 | 33000 | 0.0 | - |
820
+ | 1.7324 | 33050 | 0.0 | - |
821
+ | 1.7350 | 33100 | 0.0 | - |
822
+ | 1.7376 | 33150 | 0.0 | - |
823
+ | 1.7402 | 33200 | 0.0 | - |
824
+ | 1.7428 | 33250 | 0.0 | - |
825
+ | 1.7455 | 33300 | 0.0 | - |
826
+ | 1.7481 | 33350 | 0.0 | - |
827
+ | 1.7507 | 33400 | 0.0 | - |
828
+ | 1.7533 | 33450 | 0.0 | - |
829
+ | 1.7559 | 33500 | 0.0 | - |
830
+ | 1.7586 | 33550 | 0.0 | - |
831
+ | 1.7612 | 33600 | 0.0 | - |
832
+ | 1.7638 | 33650 | 0.0 | - |
833
+ | 1.7664 | 33700 | 0.0 | - |
834
+ | 1.7691 | 33750 | 0.0 | - |
835
+ | 1.7717 | 33800 | 0.0 | - |
836
+ | 1.7743 | 33850 | 0.0 | - |
837
+ | 1.7769 | 33900 | 0.0 | - |
838
+ | 1.7795 | 33950 | 0.0 | - |
839
+ | 1.7822 | 34000 | 0.0 | - |
840
+ | 1.7848 | 34050 | 0.0 | - |
841
+ | 1.7874 | 34100 | 0.0 | - |
842
+ | 1.7900 | 34150 | 0.0 | - |
843
+ | 1.7926 | 34200 | 0.0 | - |
844
+ | 1.7953 | 34250 | 0.0 | - |
845
+ | 1.7979 | 34300 | 0.0 | - |
846
+ | 1.8005 | 34350 | 0.0 | - |
847
+ | 1.8031 | 34400 | 0.0 | - |
848
+ | 1.8057 | 34450 | 0.0 | - |
849
+ | 1.8084 | 34500 | 0.0 | - |
850
+ | 1.8110 | 34550 | 0.0 | - |
851
+ | 1.8136 | 34600 | 0.0 | - |
852
+ | 1.8162 | 34650 | 0.0 | - |
853
+ | 1.8188 | 34700 | 0.0 | - |
854
+ | 1.8215 | 34750 | 0.0 | - |
855
+ | 1.8241 | 34800 | 0.0 | - |
856
+ | 1.8267 | 34850 | 0.0 | - |
857
+ | 1.8293 | 34900 | 0.0 | - |
858
+ | 1.8320 | 34950 | 0.0 | - |
859
+ | 1.8346 | 35000 | 0.0 | - |
860
+ | 1.8372 | 35050 | 0.0 | - |
861
+ | 1.8398 | 35100 | 0.0 | - |
862
+ | 1.8424 | 35150 | 0.0 | - |
863
+ | 1.8451 | 35200 | 0.0 | - |
864
+ | 1.8477 | 35250 | 0.0 | - |
865
+ | 1.8503 | 35300 | 0.0 | - |
866
+ | 1.8529 | 35350 | 0.0 | - |
867
+ | 1.8555 | 35400 | 0.0 | - |
868
+ | 1.8582 | 35450 | 0.0 | - |
869
+ | 1.8608 | 35500 | 0.0 | - |
870
+ | 1.8634 | 35550 | 0.0 | - |
871
+ | 1.8660 | 35600 | 0.0 | - |
872
+ | 1.8686 | 35650 | 0.0 | - |
873
+ | 1.8713 | 35700 | 0.0 | - |
874
+ | 1.8739 | 35750 | 0.0 | - |
875
+ | 1.8765 | 35800 | 0.0 | - |
876
+ | 1.8791 | 35850 | 0.0 | - |
877
+ | 1.8817 | 35900 | 0.0 | - |
878
+ | 1.8844 | 35950 | 0.0 | - |
879
+ | 1.8870 | 36000 | 0.0 | - |
880
+ | 1.8896 | 36050 | 0.0 | - |
881
+ | 1.8922 | 36100 | 0.0 | - |
882
+ | 1.8949 | 36150 | 0.0 | - |
883
+ | 1.8975 | 36200 | 0.0 | - |
884
+ | 1.9001 | 36250 | 0.0 | - |
885
+ | 1.9027 | 36300 | 0.0 | - |
886
+ | 1.9053 | 36350 | 0.0 | - |
887
+ | 1.9080 | 36400 | 0.0 | - |
888
+ | 1.9106 | 36450 | 0.0 | - |
889
+ | 1.9132 | 36500 | 0.0 | - |
890
+ | 1.9158 | 36550 | 0.0 | - |
891
+ | 1.9184 | 36600 | 0.0 | - |
892
+ | 1.9211 | 36650 | 0.0 | - |
893
+ | 1.9237 | 36700 | 0.0 | - |
894
+ | 1.9263 | 36750 | 0.0 | - |
895
+ | 1.9289 | 36800 | 0.0 | - |
896
+ | 1.9315 | 36850 | 0.0 | - |
897
+ | 1.9342 | 36900 | 0.0 | - |
898
+ | 1.9368 | 36950 | 0.0 | - |
899
+ | 1.9394 | 37000 | 0.0 | - |
900
+ | 1.9420 | 37050 | 0.0 | - |
901
+ | 1.9446 | 37100 | 0.0 | - |
902
+ | 1.9473 | 37150 | 0.0 | - |
903
+ | 1.9499 | 37200 | 0.0 | - |
904
+ | 1.9525 | 37250 | 0.0 | - |
905
+ | 1.9551 | 37300 | 0.0 | - |
906
+ | 1.9578 | 37350 | 0.0 | - |
907
+ | 1.9604 | 37400 | 0.0 | - |
908
+ | 1.9630 | 37450 | 0.0 | - |
909
+ | 1.9656 | 37500 | 0.0 | - |
910
+ | 1.9682 | 37550 | 0.0 | - |
911
+ | 1.9709 | 37600 | 0.0 | - |
912
+ | 1.9735 | 37650 | 0.0 | - |
913
+ | 1.9761 | 37700 | 0.0 | - |
914
+ | 1.9787 | 37750 | 0.0 | - |
915
+ | 1.9813 | 37800 | 0.0 | - |
916
+ | 1.9840 | 37850 | 0.0 | - |
917
+ | 1.9866 | 37900 | 0.0 | - |
918
+ | 1.9892 | 37950 | 0.0 | - |
919
+ | 1.9918 | 38000 | 0.0 | - |
920
+ | 1.9944 | 38050 | 0.0 | - |
921
+ | 1.9971 | 38100 | 0.0 | - |
922
+ | 1.9997 | 38150 | 0.0 | - |
923
+ | 2.0 | 38156 | - | 0.0438 |
924
+
925
+ * The bold row denotes the saved checkpoint.
926
+ ### Framework Versions
927
+ - Python: 3.10.12
928
+ - SetFit: 1.0.1
929
+ - Sentence Transformers: 2.2.2
930
+ - Transformers: 4.36.0
931
+ - PyTorch: 2.0.0
932
+ - Datasets: 2.16.1
933
+ - Tokenizers: 0.15.0
934
+
935
+ ## Citation
936
+
937
+ ### BibTeX
938
+ ```bibtex
939
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
940
+ doi = {10.48550/ARXIV.2209.11055},
941
+ url = {https://arxiv.org/abs/2209.11055},
942
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
943
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
944
+ title = {Efficient Few-Shot Learning Without Prompts},
945
+ publisher = {arXiv},
946
+ year = {2022},
947
+ copyright = {Creative Commons Attribution 4.0 International}
948
+ }
949
+ ```
950
+
951
+ <!--
952
+ ## Glossary
953
+
954
+ *Clearly define terms in order to be accessible across audiences.*
955
+ -->
956
+
957
+ <!--
958
+ ## Model Card Authors
959
+
960
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
961
+ -->
962
+
963
+ <!--
964
+ ## Model Card Contact
965
+
966
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
967
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_19078/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.36.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:470747b22894ead18216ad49b154c444a95cec3df2a0a70146c238fede3deecb
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd691044aa1d707ebcc67a33bf6b922eb70030040c0fba598d8ec28e306364f
3
+ size 19311
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff