spam-detection_m1
This model is a fine-tuned version of google-bert/bert-base-uncased on an spam-detection dataset. It achieves the following results on the evaluation set:
- Loss: 0.0202
- Accuracy: 0.9967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 256 | 0.1144 | 0.9919 |
0.22 | 2.0 | 512 | 0.0483 | 0.9923 |
0.22 | 3.0 | 768 | 0.0321 | 0.9949 |
0.0361 | 4.0 | 1024 | 0.0275 | 0.9949 |
0.0361 | 5.0 | 1280 | 0.0245 | 0.9952 |
0.0233 | 6.0 | 1536 | 0.0232 | 0.9960 |
0.0233 | 7.0 | 1792 | 0.0220 | 0.9967 |
0.0171 | 8.0 | 2048 | 0.0209 | 0.9967 |
0.0171 | 9.0 | 2304 | 0.0211 | 0.9967 |
0.0148 | 10.0 | 2560 | 0.0202 | 0.9967 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 221
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for vishnun0027/Spam-Detection
Base model
google-bert/bert-base-uncased