|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv2-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: layoutlmv2-base-uncased_finetuned_docvqa |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv2-base-uncased_finetuned_docvqa |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.7623 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 5.2477 | 0.2212 | 50 | 4.4955 | |
|
| 4.4322 | 0.4425 | 100 | 4.0859 | |
|
| 4.2098 | 0.6637 | 150 | 3.8177 | |
|
| 3.8664 | 0.8850 | 200 | 3.5806 | |
|
| 3.5251 | 1.1062 | 250 | 3.5032 | |
|
| 3.1732 | 1.3274 | 300 | 3.2472 | |
|
| 3.0841 | 1.5487 | 350 | 3.0947 | |
|
| 2.8536 | 1.7699 | 400 | 2.7800 | |
|
| 2.4276 | 1.9912 | 450 | 2.7769 | |
|
| 2.06 | 2.2124 | 500 | 2.6578 | |
|
| 1.8173 | 2.4336 | 550 | 2.6715 | |
|
| 2.1107 | 2.6549 | 600 | 2.5620 | |
|
| 2.1352 | 2.8761 | 650 | 2.3209 | |
|
| 1.5368 | 3.0973 | 700 | 2.2305 | |
|
| 1.3107 | 3.3186 | 750 | 2.6482 | |
|
| 1.4519 | 3.5398 | 800 | 2.3794 | |
|
| 1.2756 | 3.7611 | 850 | 2.3672 | |
|
| 1.2282 | 3.9823 | 900 | 2.2342 | |
|
| 1.0882 | 4.2035 | 950 | 2.7453 | |
|
| 0.9957 | 4.4248 | 1000 | 2.7899 | |
|
| 1.0055 | 4.6460 | 1050 | 2.7979 | |
|
| 0.9377 | 4.8673 | 1100 | 2.5045 | |
|
| 1.0285 | 5.0885 | 1150 | 2.4579 | |
|
| 0.6299 | 5.3097 | 1200 | 2.7204 | |
|
| 0.8789 | 5.5310 | 1250 | 2.6098 | |
|
| 0.5642 | 5.7522 | 1300 | 2.7831 | |
|
| 0.6949 | 5.9735 | 1350 | 3.0893 | |
|
| 0.4063 | 6.1947 | 1400 | 2.8284 | |
|
| 0.5117 | 6.4159 | 1450 | 3.0634 | |
|
| 0.4416 | 6.6372 | 1500 | 3.3999 | |
|
| 0.4999 | 6.8584 | 1550 | 3.2898 | |
|
| 0.5086 | 7.0796 | 1600 | 3.4221 | |
|
| 0.3996 | 7.3009 | 1650 | 3.0418 | |
|
| 0.235 | 7.5221 | 1700 | 3.3613 | |
|
| 0.4907 | 7.7434 | 1750 | 3.1062 | |
|
| 0.3033 | 7.9646 | 1800 | 4.0306 | |
|
| 0.3901 | 8.1858 | 1850 | 3.8258 | |
|
| 0.3625 | 8.4071 | 1900 | 3.2560 | |
|
| 0.3074 | 8.6283 | 1950 | 3.6874 | |
|
| 0.3582 | 8.8496 | 2000 | 3.2337 | |
|
| 0.2091 | 9.0708 | 2050 | 3.2660 | |
|
| 0.2416 | 9.2920 | 2100 | 3.4408 | |
|
| 0.1241 | 9.5133 | 2150 | 3.6883 | |
|
| 0.2945 | 9.7345 | 2200 | 3.5552 | |
|
| 0.2575 | 9.9558 | 2250 | 3.3925 | |
|
| 0.258 | 10.1770 | 2300 | 3.8662 | |
|
| 0.1662 | 10.3982 | 2350 | 3.6742 | |
|
| 0.1491 | 10.6195 | 2400 | 4.3579 | |
|
| 0.2379 | 10.8407 | 2450 | 4.1496 | |
|
| 0.0899 | 11.0619 | 2500 | 4.2631 | |
|
| 0.026 | 11.2832 | 2550 | 4.3676 | |
|
| 0.1356 | 11.5044 | 2600 | 4.1160 | |
|
| 0.0734 | 11.7257 | 2650 | 3.8254 | |
|
| 0.2507 | 11.9469 | 2700 | 3.9717 | |
|
| 0.1241 | 12.1681 | 2750 | 3.7671 | |
|
| 0.0207 | 12.3894 | 2800 | 3.9668 | |
|
| 0.0662 | 12.6106 | 2850 | 4.0811 | |
|
| 0.1262 | 12.8319 | 2900 | 3.9894 | |
|
| 0.0483 | 13.0531 | 2950 | 4.0627 | |
|
| 0.0889 | 13.2743 | 3000 | 4.1365 | |
|
| 0.0311 | 13.4956 | 3050 | 4.1390 | |
|
| 0.0992 | 13.7168 | 3100 | 4.0020 | |
|
| 0.1021 | 13.9381 | 3150 | 3.8962 | |
|
| 0.109 | 14.1593 | 3200 | 4.2122 | |
|
| 0.0164 | 14.3805 | 3250 | 4.3584 | |
|
| 0.0663 | 14.6018 | 3300 | 4.1452 | |
|
| 0.0702 | 14.8230 | 3350 | 4.2793 | |
|
| 0.0435 | 15.0442 | 3400 | 4.3782 | |
|
| 0.0504 | 15.2655 | 3450 | 4.3851 | |
|
| 0.0185 | 15.4867 | 3500 | 4.6016 | |
|
| 0.0795 | 15.7080 | 3550 | 4.5381 | |
|
| 0.049 | 15.9292 | 3600 | 4.2093 | |
|
| 0.0608 | 16.1504 | 3650 | 4.3391 | |
|
| 0.0953 | 16.3717 | 3700 | 4.2657 | |
|
| 0.0603 | 16.5929 | 3750 | 4.4624 | |
|
| 0.0312 | 16.8142 | 3800 | 4.3063 | |
|
| 0.0038 | 17.0354 | 3850 | 4.4603 | |
|
| 0.0271 | 17.2566 | 3900 | 4.4354 | |
|
| 0.0094 | 17.4779 | 3950 | 4.6563 | |
|
| 0.019 | 17.6991 | 4000 | 4.7925 | |
|
| 0.045 | 17.9204 | 4050 | 4.6123 | |
|
| 0.0112 | 18.1416 | 4100 | 4.6376 | |
|
| 0.0348 | 18.3628 | 4150 | 4.6756 | |
|
| 0.0216 | 18.5841 | 4200 | 4.7026 | |
|
| 0.009 | 18.8053 | 4250 | 4.7217 | |
|
| 0.0356 | 19.0265 | 4300 | 4.7260 | |
|
| 0.0479 | 19.2478 | 4350 | 4.7143 | |
|
| 0.0114 | 19.4690 | 4400 | 4.7547 | |
|
| 0.0069 | 19.6903 | 4450 | 4.7605 | |
|
| 0.0053 | 19.9115 | 4500 | 4.7623 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|