File size: 6,106 Bytes
d1f2934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21aeb
d1f2934
 
eb21aeb
d1f2934
 
eb21aeb
d1f2934
 
eb21aeb
d1f2934
 
eb21aeb
d1f2934
 
 
a905160
d1f2934
 
 
a905160
d1f2934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21aeb
 
 
 
 
 
 
 
d1f2934
 
 
 
 
 
 
 
 
 
 
a905160
d1f2934
 
eb21aeb
 
d1f2934
 
 
eb21aeb
d1f2934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: ko
datasets:
- lmqg/qg_koquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다."
  example_title: "Question Generation Example 1" 
- text: "백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진 타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다."
  example_title: "Question Generation Example 2" 
- text: "<hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다."
  example_title: "Question Generation Example 3" 
model-index:
- name: vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_koquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 10.99
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 26.81
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 28.76
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 83.39
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 83.1
---

# Model Card of `vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg`
This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-30000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-30000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [ckpts/mt5-small-trimmed-ko-30000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-30000)   
- **Language:** ko  
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ko", model="vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg")

# model prediction
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg")
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   83.39 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_1     |   26.37 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_2     |   19.37 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_3     |   14.53 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| Bleu_4     |   10.99 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| METEOR     |   28.76 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| MoverScore |   83.1  | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
| ROUGE_L    |   26.81 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_koquad
 - dataset_name: default
 - input_types: paragraph_answer
 - output_types: question
 - prefix_types: None
 - model: ckpts/mt5-small-trimmed-ko-30000
 - max_length: 512
 - max_length_output: 32
 - epoch: 16
 - batch: 64
 - lr: 0.001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 1
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```