YAML Metadata
Error:
"language" must only contain lowercase characters
YAML Metadata
Error:
"language" with value "zh-TW" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
Wav2Vec2-Large-XLSR-53-tw-gpt
Fine-tuned facebook/wav2vec2-large-xlsr-53 on zh-tw using the Common Voice.
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
AutoTokenizer,
AutoModelWithLMHead
)
import torch
import re
import sys
model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
device = "cuda"
processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese")
gpt_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device)
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def load_file_to_data(file):
batch = {}
speech, _ = torchaudio.load(file)
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
return batch
def predict(data):
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
gpt_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0)
gpt_prob = torch.nn.functional.softmax(gpt_model(gpt_input).logits, dim=-1)[:voice_prob.size()[0],:]
comb_pred_ids = torch.argmax(gpt_prob*voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
return decoded_results
Predict
predict(load_file_to_data('voice file path'))
Evaluation
The model can be evaluated as follows on the zh-tw test data of Common Voice.
CER calculation refer to https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese
env setup:
!pip install editdistance
!pip install torchaudio
!pip install datasets transformers
Evaluation without LM:
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
from transformers import AutoTokenizer, AutoModelWithLMHead
from datasets import Audio
from math import log
model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
device = "cuda"
processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese")
lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device)
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
ds = load_dataset("common_voice", 'zh-TW', split="test")
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
def map_to_array(batch):
audio = batch["audio"]
batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
batch["sampling_rate"] = audio["sampling_rate"]
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys()))
def cer_cal(groundtruth, hypothesis):
err = 0
tot = 0
for p, t in zip(hypothesis, groundtruth):
err += float(ed.eval(p.lower(), t.lower()))
tot += len(t)
return err / tot
print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"])))
CER: 28.70
.TIME: 04:08 min
Evaluation with GPT:
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
from transformers import AutoTokenizer, AutoModelWithLMHead
from datasets import Audio
from math import log
model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
device = "cuda"
processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese")
lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device)
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
ds = load_dataset("common_voice", 'zh-TW', split="test")
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
def map_to_array(batch):
audio = batch["audio"]
batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
batch["sampling_rate"] = audio["sampling_rate"]
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
lm_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to(device),pred_ids[pred_ids>0]), 0)
lm_prob = torch.nn.functional.softmax(lm_model(lm_input).logits, dim=-1)[:voice_prob.size()[0],:]
comb_pred_ids = torch.argmax(lm_prob*voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
batch["predicted"] = decoded_results
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys()))
def cer_cal(groundtruth, hypothesis):
err = 0
tot = 0
for p, t in zip(hypothesis, groundtruth):
err += float(ed.eval(p.lower(), t.lower()))
tot += len(t)
return err / tot
print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"])))
CER 25.70
.TIME: 06:04 min
Evaluation with GPT + beam search:
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
from transformers import AutoTokenizer, AutoModelWithLMHead
from datasets import Audio
from math import log
model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
device = "cuda"
processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
tokenizer = AutoTokenizer.from_pretrained("ckiplab/gpt2-base-chinese")
lm_model = AutoModelWithLMHead.from_pretrained("ckiplab/gpt2-base-chinese").to(device)
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
ds = load_dataset("common_voice", 'zh-TW', split="test")
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
def map_to_array(batch):
audio = batch["audio"]
batch["speech"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
batch["sampling_rate"] = audio["sampling_rate"]
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
sequences = [[[], 1.0]]
pred_ids = torch.argmax(logit, dim=-1)
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
while True:
all_candidates = list()
exceed = False
for seq in sequences:
tokens, score = seq
gpt_input = torch.tensor([tokenizer.cls_token_id]+tokens).to(device)
gpt_prob = torch.nn.functional.softmax(lm_model(gpt_input).logits, dim=-1)[:len(gpt_input),:]
if len(gpt_input) >= len(voice_prob):
exceed = True
comb_pred_ids = gpt_prob*voice_prob[:len(gpt_input)]
v,i = torch.topk(comb_pred_ids,50,dim=-1)
for tok_id,tok_prob in zip(i.tolist()[-1],v.tolist()[-1]):
candidate = [tokens + [tok_id], score + -log(tok_prob)]
all_candidates.append(candidate)
ordered = sorted(all_candidates, key=lambda tup: tup[1])
sequences = ordered[:10]
if exceed:
break
decoded_results.append(processor.decode(sequences[0][0]))
batch["predicted"] = decoded_results
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=3, remove_columns=list(ds.features.keys()))
def cer_cal(groundtruth, hypothesis):
err = 0
tot = 0
for p, t in zip(hypothesis, groundtruth):
err += float(ed.eval(p.lower(), t.lower()))
tot += len(t)
return err / tot
print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"])))
CER 18.36
.
Evaluation with BERT:
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
device = "cuda"
processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
lm_model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese").to(device)
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = ~pred_ids.eq(tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
lm_input = torch.masked_select(pred_ids, ~pred_ids.eq(tokenizer.pad_token_id)).unsqueeze(0)
mask_lm_prob = voice_prob.clone()
for i in range(lm_input.shape[-1]):
masked_lm_input = lm_input.clone()
masked_lm_input[0][i] = torch.tensor(tokenizer.mask_token_id).to('cuda')
lm_prob = torch.nn.functional.softmax(lm_model(masked_lm_input).logits, dim=-1).squeeze(0)
mask_lm_prob[i] = lm_prob[i]
comb_pred_ids = torch.argmax(mask_lm_prob*voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
batch["predicted"] = decoded_results
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
def cer_cal(groundtruth, hypothesis):
err = 0
tot = 0
for p, t in zip(hypothesis, groundtruth):
err += float(ed.eval(p.lower(), t.lower()))
tot += len(t)
return err / tot
print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"])))
CER 25.57
.TIME: 09:49 min
Evaluation with T-TA:
setup
!git clone https://github.com/voidful/pytorch-tta.git
!mv ./pytorch-tta/tta ./tta
!wget https://github.com/voidful/pytorch-tta/releases/download/wiki_zh/wiki_zh.pt
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
from tta.modeling_tta import TTALMModel
from transformers import AutoTokenizer
import torch
model_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
device = "cuda"
processor_name = "voidful/wav2vec2-large-xlsr-53-tw-gpt"
chars_to_ignore_regex = r"[¥•"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·'℃°•·.﹑︰〈〉─《﹖﹣﹂﹁﹔!?。。"#$%&'()*+,﹐-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏..!\"#$%&()*+,\-.\:;<=>?@\[\]\\\/^_`{|}~]"
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
lm_model = TTALMModel("bert-base-chinese")
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
lm_model.load_state_dict(torch.load("./wiki_zh.pt",map_location=torch.device('cuda')))
lm_model.to('cuda')
lm_model.eval()
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
ds = load_dataset("common_voice", 'zh-TW', data_dir="./cv-corpus-6.1-2020-12-11", split="test")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = ~pred_ids.eq(tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
lm_input = torch.masked_select(pred_ids, ~pred_ids.eq(tokenizer.pad_token_id)).unsqueeze(0)
lm_prob = torch.nn.functional.softmax(lm_model.forward(lm_input)[0], dim=-1).squeeze(0)
comb_pred_ids = torch.argmax(lm_prob*voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
batch["predicted"] = decoded_results
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
def cer_cal(groundtruth, hypothesis):
err = 0
tot = 0
for p, t in zip(hypothesis, groundtruth):
err += float(ed.eval(p.lower(), t.lower()))
tot += len(t)
return err / tot
print("CER: {:2f}".format(100 * cer_cal(result["target"],result["predicted"])))
CER: 25.77
.TIME: 06:01 min
- Downloads last month
- 78
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.