Edit model card

The model and the tokenizer are based on facebook/nllb-200-1.3B.

We trained the model to use one sentence of context. The context is prepended to the input sentence with the sep_token in between. We used a subset of the OpenSubtitles2018 dataset for training. We trained on the interleaved dataset for all directions between the following languages: English, German, Dutch, Spanish, Italian, and Greek.

The tokenizer of the base model was not changed. For the language codes, see the base model.

Use this code for translation:


model_name = 'voxreality/src_ctx_aware_nllb_1.3B'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

max_length = 100
src_lang = 'eng_Latn'
tgt_lang = 'deu_Latn'
context_text = 'This is an optional context sentence.'
sentence_text = 'Text to be translated.'

# if the context is provided use the following:
input_text = f'{context_text} {tokenizer.sep_token} {sentence_text}'
# if no context is provided use the following:
# input_text = sentence_text

tokenizer.src_lang = src_lang
inputs = tokenizer(input_text, return_tensors='pt').to(model.device)
model_output = model.generate(**inputs,
                              forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
                              max_length=max_length)
output_text = tokenizer.batch_decode(model_output, skip_special_tokens=True)[0]

print(output_text)

You can also use the pipeline

from transformers import pipeline

model_name = 'voxreality/src_ctx_aware_nllb_1.3B'
translation_pipeline = pipeline("translation", model=model_name)
src_lang = 'eng_Latn'
tgt_lang = 'deu_Latn'
context_text = 'This is an optional context sentence.'
sentence_text = 'Text to be translated.'

# if the context is provided use the following:
input_texts = [f'{context_text} {tokenizer.sep_token} {sentence_text}']
# if no context is provided use the following:
# input_texts = [sentence_text]


pipeline_output = translation_pipeline(input_texts, src_lang=src_lang, tgt_lang=tgt_lang)

print(pipeline_output[0]['translation_text'])
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.