|
--- |
|
pipeline_tag: translation |
|
--- |
|
|
|
The model and the tokenizer are based on [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M). |
|
|
|
We trained the model to use one sentence of context. The context is prepended to the input sentence with the `sep_token` in between. We used a subset of the [OpenSubtitles2018]( https://huggingface.co/datasets/open_subtitles) dataset for training. We trained on the interleaved dataset for all directions between the following languages: English, German, Dutch, Spanish, Italian, and Greek. |
|
The tokenizer of the base model was not changed. For the language codes, see the base model. |
|
|
|
Use this code for translation: |
|
``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
model_name = 'voxreality/src_ctx_aware_nllb_600M' |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
max_length = 100 |
|
src_lang = 'eng_Latn' |
|
tgt_lang = 'deu_Latn' |
|
context_text = 'This is an optional context sentence.' # use '' empty string if not context should be used |
|
sentence_text = 'Text to be translated.' |
|
input_text = f'{context_text} {tokenizer.sep_token} {sentence_text}' |
|
|
|
tokenizer.src_lang = src_lang |
|
inputs = tokenizer(input_text, return_tensors='pt').to(model.device) |
|
model_output = model.generate(**inputs, |
|
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], |
|
max_length=max_length) |
|
output_text = tokenizer.batch_decode(model_output, skip_special_tokens=True)[0] |
|
|
|
print(output_text) |
|
``` |
|
|
|
You can also use the pipeline |
|
``` |
|
from transformers import pipeline |
|
|
|
model_name = 'voxreality/src_ctx_aware_nllb_600M' |
|
translation_pipeline = pipeline("translation", model=model_name) |
|
src_lang = 'eng_Latn' |
|
tgt_lang = 'deu_Latn' |
|
context_text = 'This is an optional context sentence.' # use '' empty string if not context should be used |
|
sentence_text = 'Text to be translated.' |
|
input_texts = [f'{context_text} {translation_pipeline.tokenizer.sep_token} {sentence_text}'] |
|
|
|
pipeline_output = translation_pipeline(input_texts, src_lang=src_lang, tgt_lang=tgt_lang) |
|
|
|
print(pipeline_output[0]['translation_text']) |
|
|
|
``` |
|
|