Edit model card

whisper-base-lastversion

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1732

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000025
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: gpu
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • training_steps: 80000

Training results

Training Loss Epoch Step Validation Loss
0.3116 1 5000 0.6231
0.2104 3 10000 0.4287
0.1729 4 15000 0.3421
0.1472 6 20000 0.3211
0.128 7 25000 0.2811
0.1065 9 30000 0.2649
0.0995 10 35000 0.2523
0.0812 12 40000 0.2401
0.066 14 45000 0.2311
0.0574 15 50000 0.2132
0.0463 17 55000 0.2077
0.04 18 60000 0.1957
0.0314 19 65000 0.1813
0.0305 20 70000 0.1802
0.0298 21 75000 0.1755
0.0265 22 80000 0.1732

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.1.0a0+gitcc01568
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.