|
--- |
|
language: ja |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Japanese by Chien Vu |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice Japanese |
|
type: common_voice |
|
args: ja |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 30.84 |
|
- name: Test CER |
|
type: cer |
|
value: 17.85 |
|
--- |
|
# Wav2Vec2-Large-XLSR-53-Japanese |
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
```python |
|
!pip install mecab-python3 |
|
!pip install unidic-lite |
|
!python -m unidic download |
|
import torch |
|
import torchaudio |
|
import librosa |
|
from datasets import load_dataset |
|
import MeCab |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
# config |
|
wakati = MeCab.Tagger("-Owakati") |
|
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\οΌ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\β¦\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\οΌ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ»]' |
|
|
|
# load data, processor and model |
|
test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") |
|
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") |
|
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") |
|
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = wakati.parse(batch["sentence"]).strip() |
|
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(sampling_rate, speech_array).squeeze() |
|
return batch |
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
## Evaluation |
|
The model can be evaluated as follows on the Japanese test data of Common Voice. |
|
```python |
|
!pip install mecab-python3 |
|
!pip install unidic-lite |
|
!python -m unidic download |
|
|
|
import torch |
|
import librosa |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
import MeCab |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
#config |
|
wakati = MeCab.Tagger("-Owakati") |
|
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\οΌ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\β¦\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\οΌ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\γ»]' |
|
|
|
# load data, processor and model |
|
test_dataset = load_dataset("common_voice", "ja", split="test") |
|
wer = load_metric("wer") |
|
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") |
|
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") |
|
model.to("cuda") |
|
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = wakati.parse(batch["sentence"]).strip() |
|
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(sampling_rate, speech_array).squeeze() |
|
return batch |
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# evaluate function |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
## Test Result |
|
**WER:** 30.84%, |
|
**CER:** 17.85% |
|
|
|
## Training |
|
The Common Voice `train`, `validation` datasets and Japanese speech corpus `basic5000` datasets were used for training. |
|
|
|
|