|
--- |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- vumichien/preprocessed_jsut_jsss_css10_common_voice_11 |
|
metrics: |
|
- wer |
|
base_model: openai/whisper-medium |
|
model-index: |
|
- name: Whisper Medium Japanese |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 ja |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: ja |
|
split: test |
|
args: ja |
|
metrics: |
|
- type: wer |
|
value: 8.7213 |
|
name: Wer |
|
- type: cer |
|
value: 5.4698 |
|
name: Cer |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: ja_jp |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 12.825163229350192 |
|
name: WER |
|
- type: cer |
|
value: 7.797336057522297 |
|
name: CER |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# openai/whisper-medium |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the vumichien/preprocessed_jsut_jsss_css10_common_voice_11 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2836 |
|
- Wer: 8.7213 |
|
- Cer: 5.4698 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:| |
|
| 0.1106 | 1.1 | 1000 | 0.1827 | 10.3480 | 6.4784 | |
|
| 0.0487 | 2.2 | 2000 | 0.1799 | 9.4764 | 5.9127 | |
|
| 0.0243 | 3.29 | 3000 | 0.1950 | 9.2111 | 5.8069 | |
|
| 0.0106 | 4.39 | 4000 | 0.2113 | 8.9713 | 5.5756 | |
|
| 0.0054 | 5.49 | 5000 | 0.2325 | 8.6470 | 5.4041 | |
|
| 0.0031 | 6.59 | 6000 | 0.2462 | 8.7078 | 5.4409 | |
|
| 0.0014 | 7.68 | 7000 | 0.2608 | 8.7145 | 5.4849 | |
|
| 0.0009 | 8.78 | 8000 | 0.2695 | 8.6301 | 5.3876 | |
|
| 0.0004 | 9.88 | 9000 | 0.2794 | 8.6064 | 5.3528 | |
|
| 0.0003 | 10.98 | 10000 | 0.2836 | 8.7213 | 5.4698 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|