AmpGPT2 / README.md
wabu's picture
Update README.md
6834eab verified
|
raw
history blame
2.72 kB
---
license: apache-2.0
base_model: nferruz/ProtGPT2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: AmpGPT2
results: []
---
# AmpGPT2
AmpGPT2 is a language model capable of generating de novo antimicrobial peptides (AMPs). Over 95% of sequences generated by AmpGPT2 are predicted to have antimicrobial activities.
## Model description
AmpGPT2 is a fine-tuned version of [nferruz/ProtGPT2](https://huggingface.co/nferruz/ProtGPT2) based on the GPT2 Transformer architecture.
| Model | sequences generated | AMP percentage (AMP%) | average length |
|:------------:|:-----------:|:-----------:|:-----------:|
| AmpGPT2| 1000 | 95.86| 64.08 |
| ProtGPT2| 1000 | 51.85 | 222.59 |
The results demonstrate that AmpGPT2 outperformes ProtGPT2 in AMP%, suggesting the model learned from the AMP-specific data.
To validate the results the Antimicrobial Peptide Scanner vr.2 (https://www.dveltri.com/ascan/v2/ascan.html) was used, which is a deep learning tool specifically designed for AMP recognition.
## Training and evaluation data
AmpGPT2 was trained using 32014 AMP sequences from the Compass (https://compass.mathematik.uni-marburg.de/) database.
## How to use AmpGPT2
The example code below contains the ideal generation settings found while testing.
The 'num_return_sequences' parameter specifies the amount of sequences generated. When generating more than 100 sequences at the same time, I recommend doing it in batches.
The results can then be checked with the peptide scanner.
```
from transformers import pipeline
from transformers import GPT2LMHeadModel, GPT2Tokenizer
ampgpt2 = pipeline('text-generation', model="wabu/AmpGPT2")
model_amp = GPT2LMHeadModel.from_pretrained('wabu/AmpGPT2')
tokenizer_amp = GPT2Tokenizer.from_pretrained('wabu/AmpGPT2')
amp_sequences = ampgpt2( "", do_sample=True, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0 )
for i, seq in enumerate(amp_sequences):
sequence_identifier = f"Sequence_{i + 1}"
sequence = seq['generated_text'].replace('','').strip()
print(f">{sequence_identifier}\n{sequence}")
```
### Training hyperparameters and results
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50.0
| Training Loss | Epoch | Validation Loss | Accuracy |
|:-------------:|:-----:|:---------------:|:--------:|
| 3.7948 | 50.0 | 3.9890 | 0.4213 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
The model was trained on four NVIDIA A100 GPUs.