warmestman's picture
End of training
c5bb807 verified
metadata
language:
  - mn
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Large MN - Ankhbayasgalan Davaadorj
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1 & FLEURS
          type: mozilla-foundation/common_voice_16_1
          config: mn
          split: None
          args: 'config: mn, split: test+validation'
        metrics:
          - name: Wer
            type: wer
            value: 37.049667235025574

Whisper Large MN - Ankhbayasgalan Davaadorj

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 16.1 & FLEURS dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3245
  • Wer: 37.0497

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4691 0.3 100 0.5472 57.2191
0.3191 0.6 200 0.4417 49.0237
0.2677 0.9 300 0.3791 43.3530
0.1486 1.2 400 0.3560 40.1188
0.1387 1.5 500 0.3430 37.8912
0.1396 1.8 600 0.3245 37.0497

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2