|
--- |
|
license: mit |
|
--- |
|
|
|
## How to run |
|
|
|
```python |
|
import torch |
|
from diffusers import AutoPipelineForText2Image |
|
from diffusers.pipelines.wuerstchen import WuerstchenPrior |
|
|
|
prior_model = WuerstchenPrior.from_pretrained("warp-diffusion/wuerstchen-prior", torch_dtype=torch.float16) |
|
pipe = AutoPipelineForText2Image.from_pretrained("warp-diffusion/wuerstchen", prior_prior=prior_model, torch_dtype=torch.float16).to("cuda") |
|
|
|
prompt = [ |
|
"An old destroyed car standing on a cliff in norway, cinematic photography", |
|
"Western movie, closeup cinematic photography", |
|
"Pink nike shoe commercial, closeup cinematic photography", |
|
"Croatia, closeup cinematic photography", |
|
"South Tyrol mountains at sunset, closeup cinematic photography", |
|
] |
|
images = pipe(prompt, guidance_scale=8.0, width=1024, height=1024).images |
|
``` |