metadata
base_model:
- codellama/CodeLlama-70b-Instruct-hf
- cognitivecomputations/dolphin-2.9.1-llama-3-70b
- abacusai/Smaug-Llama-3-70B-Instruct-32K
- migtissera/Llama-3-70B-Synthia-v3.5
library_name: transformers
tags:
- mergekit
- merge
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the linear merge method.
Models Merged
The following models were included in the merge:
- codellama/CodeLlama-70b-Instruct-hf
- cognitivecomputations/dolphin-2.9.1-llama-3-70b
- abacusai/Smaug-Llama-3-70B-Instruct-32K
- migtissera/Llama-3-70B-Synthia-v3.5
Configuration
The following YAML configuration was used to produce this model:
merge_method: linear # use linear so we can include multiple models, albeit at a zero weight
parameters:
weight: 1.0 # weight everything as 1 unless specified otherwise - linear with one model weighted at 1 is a no-op like passthrough
slices:
- sources:
- model: cognitivecomputations/dolphin-2.9.1-llama-3-70b # embed_tokens comes along with the ride with whatever is the first layer
layer_range: [0, 1]
- model: migtissera/Llama-3-70B-Synthia-v3.5 # add dummy second model with 0 weight so tokenizer-based merge routine is invoked for embed_tokens
layer_range: [0, 1]
parameters:
weight: 0
- sources:
- model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
layer_range: [1, 20]
- sources:
- model: migtissera/Llama-3-70B-Synthia-v3.5
layer_range: [10, 30]
- sources:
- model: codellama/CodeLlama-70b-Instruct-hf
layer_range: [20, 40]
- sources:
- model: abacusai/Smaug-Llama-3-70B-Instruct-32K
layer_range: [25, 45]
- sources:
- model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
layer_range: [30, 50]
- sources:
- model: migtissera/Llama-3-70B-Synthia-v3.5
layer_range: [40, 60]
- sources:
- model: codellama/CodeLlama-70b-Instruct-hf
layer_range: [50, 70]
- sources:
- model: abacusai/Smaug-Llama-3-70B-Instruct-32K
layer_range: [55, 75]
- sources:
- model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
layer_range: [60, 79]
- sources: # same as above, but for lm_head with the last layer
- model: cognitivecomputations/dolphin-2.9.1-llama-3-70b
layer_range: [79, 80]
- model: migtissera/Llama-3-70B-Synthia-v3.5
layer_range: [79, 80]
parameters:
weight: 0
dtype: float16
tokenizer_source: model:cognitivecomputations/dolphin-2.9.1-llama-3-70b