SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("waterabbit114/my-setfit-classifier_threat")
# Run inference
preds = model("\" link thanks for fixing that disambiguation link on usher's album ) flash; \"")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 50.65 | 426 |
Label | Training Sample Count |
---|---|
0 | 10 |
1 | 10 |
Training Hyperparameters
- batch_size: (1, 1)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0013 | 1 | 0.192 | - |
0.0625 | 50 | 0.0173 | - |
0.125 | 100 | 0.0013 | - |
0.1875 | 150 | 0.0024 | - |
0.25 | 200 | 0.0002 | - |
0.3125 | 250 | 0.0 | - |
0.375 | 300 | 0.0 | - |
0.4375 | 350 | 0.0006 | - |
0.5 | 400 | 0.0003 | - |
0.5625 | 450 | 0.0001 | - |
0.625 | 500 | 0.0001 | - |
0.6875 | 550 | 0.0002 | - |
0.75 | 600 | 0.0008 | - |
0.8125 | 650 | 0.0002 | - |
0.875 | 700 | 0.0001 | - |
0.9375 | 750 | 0.0009 | - |
1.0 | 800 | 0.0001 | - |
1.0625 | 850 | 0.0001 | - |
1.125 | 900 | 0.0001 | - |
1.1875 | 950 | 0.0 | - |
1.25 | 1000 | 0.0 | - |
1.3125 | 1050 | 0.0 | - |
1.375 | 1100 | 0.0001 | - |
1.4375 | 1150 | 0.0 | - |
1.5 | 1200 | 0.0 | - |
1.5625 | 1250 | 0.0 | - |
1.625 | 1300 | 0.0 | - |
1.6875 | 1350 | 0.0 | - |
1.75 | 1400 | 0.0003 | - |
1.8125 | 1450 | 0.0001 | - |
1.875 | 1500 | 0.0 | - |
1.9375 | 1550 | 0.0001 | - |
2.0 | 1600 | 0.0 | - |
2.0625 | 1650 | 0.0 | - |
2.125 | 1700 | 0.0001 | - |
2.1875 | 1750 | 0.0 | - |
2.25 | 1800 | 0.0 | - |
2.3125 | 1850 | 0.0 | - |
2.375 | 1900 | 0.0 | - |
2.4375 | 1950 | 0.0 | - |
2.5 | 2000 | 0.0 | - |
2.5625 | 2050 | 0.0 | - |
2.625 | 2100 | 0.0001 | - |
2.6875 | 2150 | 0.0 | - |
2.75 | 2200 | 0.0 | - |
2.8125 | 2250 | 0.0002 | - |
2.875 | 2300 | 0.0 | - |
2.9375 | 2350 | 0.0 | - |
3.0 | 2400 | 0.0002 | - |
3.0625 | 2450 | 0.0 | - |
3.125 | 2500 | 0.0001 | - |
3.1875 | 2550 | 0.0001 | - |
3.25 | 2600 | 0.0001 | - |
3.3125 | 2650 | 0.0 | - |
3.375 | 2700 | 0.0 | - |
3.4375 | 2750 | 0.0 | - |
3.5 | 2800 | 0.0 | - |
3.5625 | 2850 | 0.0 | - |
3.625 | 2900 | 0.0 | - |
3.6875 | 2950 | 0.0 | - |
3.75 | 3000 | 0.0 | - |
3.8125 | 3050 | 0.0 | - |
3.875 | 3100 | 0.0002 | - |
3.9375 | 3150 | 0.0 | - |
4.0 | 3200 | 0.0 | - |
4.0625 | 3250 | 0.0001 | - |
4.125 | 3300 | 0.0001 | - |
4.1875 | 3350 | 0.0 | - |
4.25 | 3400 | 0.0004 | - |
4.3125 | 3450 | 0.0001 | - |
4.375 | 3500 | 0.0001 | - |
4.4375 | 3550 | 0.0001 | - |
4.5 | 3600 | 0.0 | - |
4.5625 | 3650 | 0.0 | - |
4.625 | 3700 | 0.0 | - |
4.6875 | 3750 | 0.0 | - |
4.75 | 3800 | 0.0 | - |
4.8125 | 3850 | 0.0 | - |
4.875 | 3900 | 0.0001 | - |
4.9375 | 3950 | 0.0 | - |
5.0 | 4000 | 0.0 | - |
5.0625 | 4050 | 0.0 | - |
5.125 | 4100 | 0.0 | - |
5.1875 | 4150 | 0.0 | - |
5.25 | 4200 | 0.0 | - |
5.3125 | 4250 | 0.0002 | - |
5.375 | 4300 | 0.0 | - |
5.4375 | 4350 | 0.0 | - |
5.5 | 4400 | 0.0 | - |
5.5625 | 4450 | 0.0001 | - |
5.625 | 4500 | 0.0 | - |
5.6875 | 4550 | 0.0 | - |
5.75 | 4600 | 0.0002 | - |
5.8125 | 4650 | 0.0 | - |
5.875 | 4700 | 0.0 | - |
5.9375 | 4750 | 0.0 | - |
6.0 | 4800 | 0.0 | - |
6.0625 | 4850 | 0.0 | - |
6.125 | 4900 | 0.0 | - |
6.1875 | 4950 | 0.0 | - |
6.25 | 5000 | 0.0 | - |
6.3125 | 5050 | 0.0 | - |
6.375 | 5100 | 0.0001 | - |
6.4375 | 5150 | 0.0 | - |
6.5 | 5200 | 0.0 | - |
6.5625 | 5250 | 0.0 | - |
6.625 | 5300 | 0.0 | - |
6.6875 | 5350 | 0.0 | - |
6.75 | 5400 | 0.0 | - |
6.8125 | 5450 | 0.0 | - |
6.875 | 5500 | 0.0 | - |
6.9375 | 5550 | 0.0 | - |
7.0 | 5600 | 0.0 | - |
7.0625 | 5650 | 0.0 | - |
7.125 | 5700 | 0.0 | - |
7.1875 | 5750 | 0.0 | - |
7.25 | 5800 | 0.0001 | - |
7.3125 | 5850 | 0.0 | - |
7.375 | 5900 | 0.0 | - |
7.4375 | 5950 | 0.0 | - |
7.5 | 6000 | 0.0 | - |
7.5625 | 6050 | 0.0 | - |
7.625 | 6100 | 0.0 | - |
7.6875 | 6150 | 0.0 | - |
7.75 | 6200 | 0.0 | - |
7.8125 | 6250 | 0.0 | - |
7.875 | 6300 | 0.0 | - |
7.9375 | 6350 | 0.0 | - |
8.0 | 6400 | 0.0 | - |
8.0625 | 6450 | 0.0 | - |
8.125 | 6500 | 0.0 | - |
8.1875 | 6550 | 0.0 | - |
8.25 | 6600 | 0.0 | - |
8.3125 | 6650 | 0.0 | - |
8.375 | 6700 | 0.0 | - |
8.4375 | 6750 | 0.0 | - |
8.5 | 6800 | 0.0 | - |
8.5625 | 6850 | 0.0 | - |
8.625 | 6900 | 0.0 | - |
8.6875 | 6950 | 0.0 | - |
8.75 | 7000 | 0.0 | - |
8.8125 | 7050 | 0.0 | - |
8.875 | 7100 | 0.0 | - |
8.9375 | 7150 | 0.0 | - |
9.0 | 7200 | 0.0 | - |
9.0625 | 7250 | 0.0 | - |
9.125 | 7300 | 0.0 | - |
9.1875 | 7350 | 0.0 | - |
9.25 | 7400 | 0.0 | - |
9.3125 | 7450 | 0.0 | - |
9.375 | 7500 | 0.0 | - |
9.4375 | 7550 | 0.0 | - |
9.5 | 7600 | 0.0 | - |
9.5625 | 7650 | 0.0 | - |
9.625 | 7700 | 0.0 | - |
9.6875 | 7750 | 0.0 | - |
9.75 | 7800 | 0.0 | - |
9.8125 | 7850 | 0.0 | - |
9.875 | 7900 | 0.0 | - |
9.9375 | 7950 | 0.0 | - |
10.0 | 8000 | 0.0 | - |
Framework Versions
- Python: 3.11.7
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.1+cu121
- Datasets: 2.14.5
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.