wchai's picture
Update README.md
262910b verified
metadata
license: apache-2.0
datasets:
  - wchai/AuroraCap-trainset
base_model:
  - lmsys/vicuna-7b-v1.5-16k
tags:
  - caption
model-index:
  - name: AuroraCap-7B
    results:
      - task:
          type: video detailed caption
        dataset:
          type: VDC
          name: VDC
        metrics:
          - type: Acc
            value: 38.21
            name: VDCScore
          - type: Acc
            value: 48.33
            name: VDD
          - type: cider
            value: 9.51
          - type: bleu
            value: 30.9
            name: bleu@1
          - type: bleu
            value: 4.06
            name: bleu@4
          - type: meteor
            value: 19.09
          - type: rouge
            value: 21.58
            name: rouge-l
      - task:
          type: video caption
        dataset:
          type: MSR-VTT
          name: NSR-VTT
        metrics:
          - type: cider
            value: 33.1
          - type: bleu
            value: 58.6
            name: bleu@1
          - type: bleu
            value: 21
            name: bleu@4
          - type: meteor
            value: 23.9
          - type: rouge
            value: 49.5
            name: rouge-l
      - task:
          type: video caption
        dataset:
          type: VATEX
          name: VATEX
        metrics:
          - type: cider
            value: 33.8
          - type: bleu
            value: 57.1
            name: bleu@1
          - type: bleu
            value: 18.4
            name: bleu@4
          - type: meteor
            value: 19
          - type: rouge
            value: 40.8
            name: rouge-l
      - task:
          type: video question anwering
        dataset:
          type: ActivityNet
          name: ActivityNet
        metrics:
          - type: Acc
            value: 61.8
      - task:
          type: video question anwering
        dataset:
          type: MSVD
          name: MSVD
        metrics:
          - type: Acc
            value: 62.6
      - task:
          type: video question anwering
        dataset:
          type: MSR-VTT
          name: MSR-VTT
        metrics:
          - type: Acc
            value: 43.5
      - task:
          type: video question anwering
        dataset:
          type: iVQA
          name: iVQA
        metrics:
          - type: Acc
            value: 55.2
pipeline_tag: video-text-to-text

Resources

Features

AuroraCap is a multimodal large language model for image and video captioning.

Quick Start

See Docs.

FAQ

Q: Can I only use token merging during inference?

A: No, our experiments show that token merging is also a way to accelerate training while maintaining similar performance. Additionally, besides auroracap, you can also use token merging on other llava-like models.

Q: Why do we provide both official LLaVA-format and Xtuner format weights for AuroraCap?

A: While Xtuner supports saving checkpoints in multiple formats, it currently only allows continued training with the Xtuner format. Therefore, we currently provide the model in the Xtuner format for both continued training and inference. In the future, we will provide the model in the official LLaVA format for both training and inference, enabling quicker SGLang deployment and integration with the transformers.

Citation

@article{chai2024auroracap,
  title={AuroraCap: Efficient, Performant Video Detailed Captioning and a New Benchmark },
  author={Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jeng-Neng Hwang, Saining Xie, Christopher D. Manning},
  journal={arXiv preprint arXiv:2410.03051},
  year={2024}
}