dahara1 commited on
Commit
7607a32
·
1 Parent(s): ffa99bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -10
README.md CHANGED
@@ -29,6 +29,8 @@ In addition to translation between Japanese and English, the model also has the
29
  Meta社の200言語以上の翻訳に対応した超多言語対応機械翻訳モデルNLLB-200シリーズと比較したベンチマーク結果は以下です。
30
  Benchmark results compared to Meta's NLLB-200 series of super multilingual machine translation models, which support translations in over 200 languages, are shown below.
31
 
 
 
32
  | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
33
  |------------------------------|-----------|--------------|----------|--------------|-----------|
34
  | NLLB-200-Distilled | 2.46GB | 23.6/- | - | 50.2/- | - |
@@ -37,22 +39,26 @@ Benchmark results compared to Meta's NLLB-200 series of super multilingual machi
37
  | NLLB-200 | 17.58GB | 25.2/- | - | 55.1/- | - |
38
  | NLLB-200 | 220.18GB | 27.9/33.2 | 0.8908 | 55.8/59.8 | 0.8792 |
39
 
40
- previous our model(ALMA-7B-Ja)
41
  | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
 
42
  | webbigdata-ALMA-7B-Ja-q4_K_S | 3.6GB | -/24.2 | 0.8210 | -/54.2 | 0.8559 |
43
  | ALMA-7B-Ja-GPTQ-Ja-En | 3.9GB | -/30.8 | 0.8743 | -/60.9 | 0.8743 |
44
  | ALMA-Ja(Ours) | 13.48GB | -/31.8 | 0.8811 | -/61.6 | 0.8773 |
45
 
46
- ALMA-7B-Ja-V2
 
 
47
  | ALMA-7B-Ja-V2-GPTQ-Ja-En | 3.9GB | -/33.0 | 0.8818 | -/62.0 | 0.8774 |
48
  | ALMA-Ja-V2(Ours) | 13.48GB | -/33.9 | 0.8820 | -/63.1 | 0.8873 |
49
  | ALMA-Ja-V2-Lora(Ours) | 13.48GB | -/33.7 | 0.8843 | -/61.1 | 0.8775 |
50
 
51
 
 
52
  様々なジャンルの文章を実際のアプリケーションと比較した結果は以下です。
53
  Here are the results of a comparison of various genres of writing with the actual application.
54
 
55
- 政府の公式文章 Government Official Announcements
56
  | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
57
  |--------------------------|------------|---------|----------|------------|---------|----------|
58
  | ALMA-7B-Ja-V2-GPTQ-Ja-En | 25.3 | 15.00 | 0.8848 | 60.3 | 26.82 | 0.6189 |
@@ -63,7 +69,7 @@ Here are the results of a comparison of various genres of writing with the actua
63
  | google-translate | 43.5 | 35.37 | 0.9181 | 62.7 | 29.22 | 0.6446 |
64
  | deepl | 43.5 | 35.74 | 0.9301 | 60.1 | 27.40 | 0.6389 |
65
 
66
- 二次創作 Fanfiction
67
  | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
68
  |--------------------------|------------|---------|----------|------------|---------|----------|
69
  | ALMA-7B-Ja-V2-GPTQ-Ja-En | 27.6 | 18.28 | 0.8643 | 52.1 | 24.58 | 0.6106 |
@@ -75,21 +81,20 @@ Here are the results of a comparison of various genres of writing with the actua
75
  | deepl | 33.5 | 28.38 | 0.9094 | 60.0 | 31.14 | 0.6124 |
76
 
77
 
78
- [Sample Code For Free Colab](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_Free_Colab_sample.ipynb)
79
 
80
 
81
 
82
  ## Other Version
83
 
84
- ### ALMA-7B-Ja-V2^GPTQ-Ja-En
85
  GPTQ is quantized(reduce the size of the model) method and ALMA-7B-Ja-V2-GPTQ has GPTQ quantized version that reduces model size(3.9GB) and memory usage.
86
  But the performance is probably lower. And translation ability for languages other than Japanese and English has deteriorated significantly.
87
 
88
- [Sample Code For Free Colab webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En](https://huggingface.co/webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En)
89
 
90
  If you want to translate the entire file at once, try Colab below.
91
- [ALMA_7B_Ja_GPTQ_Ja_En_batch_translation_sample](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_GPTQ_Ja_En_batch_translation_sample.ipynb)
92
-
93
 
94
 
95
  **ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
@@ -110,6 +115,5 @@ Original Model [ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B). (26.95GB)
110
  Prevous Model [ALMA-7B-Ja](https://huggingface.co/webbigdata/ALMA-7B-Ja). (13.3 GB)
111
 
112
 
113
-
114
  ## about this work
115
  - **This work was done by :** [webbigdata](https://webbigdata.jp/).
 
29
  Meta社の200言語以上の翻訳に対応した超多言語対応機械翻訳モデルNLLB-200シリーズと比較したベンチマーク結果は以下です。
30
  Benchmark results compared to Meta's NLLB-200 series of super multilingual machine translation models, which support translations in over 200 languages, are shown below.
31
 
32
+
33
+ ## NLLB-200
34
  | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
35
  |------------------------------|-----------|--------------|----------|--------------|-----------|
36
  | NLLB-200-Distilled | 2.46GB | 23.6/- | - | 50.2/- | - |
 
39
  | NLLB-200 | 17.58GB | 25.2/- | - | 55.1/- | - |
40
  | NLLB-200 | 220.18GB | 27.9/33.2 | 0.8908 | 55.8/59.8 | 0.8792 |
41
 
42
+ ## previous our model(ALMA-7B-Ja)
43
  | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
44
+ |------------------------------|-----------|--------------|----------|--------------|-----------|
45
  | webbigdata-ALMA-7B-Ja-q4_K_S | 3.6GB | -/24.2 | 0.8210 | -/54.2 | 0.8559 |
46
  | ALMA-7B-Ja-GPTQ-Ja-En | 3.9GB | -/30.8 | 0.8743 | -/60.9 | 0.8743 |
47
  | ALMA-Ja(Ours) | 13.48GB | -/31.8 | 0.8811 | -/61.6 | 0.8773 |
48
 
49
+ ## ALMA-7B-Ja-V2
50
+ | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
51
+ |------------------------------|-----------|--------------|----------|--------------|-----------|
52
  | ALMA-7B-Ja-V2-GPTQ-Ja-En | 3.9GB | -/33.0 | 0.8818 | -/62.0 | 0.8774 |
53
  | ALMA-Ja-V2(Ours) | 13.48GB | -/33.9 | 0.8820 | -/63.1 | 0.8873 |
54
  | ALMA-Ja-V2-Lora(Ours) | 13.48GB | -/33.7 | 0.8843 | -/61.1 | 0.8775 |
55
 
56
 
57
+
58
  様々なジャンルの文章を実際のアプリケーションと比較した結果は以下です。
59
  Here are the results of a comparison of various genres of writing with the actual application.
60
 
61
+ ## 政府の公式文章 Government Official Announcements
62
  | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
63
  |--------------------------|------------|---------|----------|------------|---------|----------|
64
  | ALMA-7B-Ja-V2-GPTQ-Ja-En | 25.3 | 15.00 | 0.8848 | 60.3 | 26.82 | 0.6189 |
 
69
  | google-translate | 43.5 | 35.37 | 0.9181 | 62.7 | 29.22 | 0.6446 |
70
  | deepl | 43.5 | 35.74 | 0.9301 | 60.1 | 27.40 | 0.6389 |
71
 
72
+ ## 二次創作 Fanfiction
73
  | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
74
  |--------------------------|------------|---------|----------|------------|---------|----------|
75
  | ALMA-7B-Ja-V2-GPTQ-Ja-En | 27.6 | 18.28 | 0.8643 | 52.1 | 24.58 | 0.6106 |
 
81
  | deepl | 33.5 | 28.38 | 0.9094 | 60.0 | 31.14 | 0.6124 |
82
 
83
 
84
+ [Sample Code For Free Colab](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_Free_Colab_sample.ipynb)
85
 
86
 
87
 
88
  ## Other Version
89
 
90
+ ### ALMA-7B-Ja-V2-GPTQ-Ja-En
91
  GPTQ is quantized(reduce the size of the model) method and ALMA-7B-Ja-V2-GPTQ has GPTQ quantized version that reduces model size(3.9GB) and memory usage.
92
  But the performance is probably lower. And translation ability for languages other than Japanese and English has deteriorated significantly.
93
 
94
+ [Sample Code For Free Colab webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En](https://github.com/webbigdata-jp/ALMA/blob/master/ALMA_7B_Ja_V2_GPTQ_Ja_En_Free_Colab_sample.ipynb)
95
 
96
  If you want to translate the entire file at once, try Colab below.
97
+ [ALMA_7B_Ja_GPTQ_Ja_En_batch_translation_sample](https://github.com/webbigdata-jp/ALMA/blob/master/ALMA_7B_Ja_V2_GPTQ_Ja_En_batch_translation_sample.ipynb)
 
98
 
99
 
100
  **ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
 
115
  Prevous Model [ALMA-7B-Ja](https://huggingface.co/webbigdata/ALMA-7B-Ja). (13.3 GB)
116
 
117
 
 
118
  ## about this work
119
  - **This work was done by :** [webbigdata](https://webbigdata.jp/).