weezywitasneezy's picture
Update README.md
9a7f712 verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - ChaoticNeutrals/Eris_Remix_7B
  - Virt-io/Erebus-Holodeck-7B
base_model:
  - ChaoticNeutrals/Eris_Remix_7B
  - Virt-io/Erebus-Holodeck-7B
license: cc-by-nc-4.0

OxytocinErosEngineeringF1-7B-slerp

OxytocinErosEngineeringF1-7B-slerp is a merge of the following models using LazyMergekit:

Thanks to MraderMarcher for providing GGUF quants-> mradermacher/OxytocinErosEngineeringF1-7B-slerp-GGUF

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.22
AI2 Reasoning Challenge (25-Shot) 67.15
HellaSwag (10-Shot) 86
MMLU (5-Shot) 64.73
TruthfulQA (0-shot) 54.54
Winogrande (5-shot) 81.14
GSM8k (5-shot) 61.79

🧩 Configuration

slices:
  - sources:
      - model: ChaoticNeutrals/Eris_Remix_7B
        layer_range: [0, 32]
      - model: Virt-io/Erebus-Holodeck-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: ChaoticNeutrals/Eris_Remix_7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])