tidy-tab-model

This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5060
  • Rouge1: 0.3341
  • Rouge2: 0.1528
  • Rougel: 0.3104
  • Rougelsum: 0.3125
  • Gen Len: 17.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 7 4.4385 0.1922 0.0928 0.1885 0.1862 17.9167
No log 2.0 14 4.1803 0.2265 0.1136 0.2229 0.2214 17.75
No log 3.0 21 3.9826 0.2505 0.0972 0.2495 0.2517 17.1667
No log 4.0 28 3.8140 0.3166 0.131 0.3117 0.3168 17.5
No log 5.0 35 3.6817 0.3442 0.1594 0.3194 0.3211 17.4167
No log 6.0 42 3.5924 0.3341 0.1528 0.3104 0.3125 17.75
No log 7.0 49 3.5356 0.3341 0.1528 0.3104 0.3125 17.75
No log 8.0 56 3.5060 0.3341 0.1528 0.3104 0.3125 17.75

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wgcv/tidy-tab-model

Base model

google-t5/t5-small
Finetuned
(1654)
this model