metadata
language:
- ru
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_14_0
metrics:
- wer
model-index:
- name: Whisper Tiny Ru
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 14.0
type: mozilla-foundation/common_voice_14_0
config: ru
split: None
args: 'config: ru, split: test'
metrics:
- name: Wer
type: wer
value: 188.79573968349942
Whisper Tiny Ru
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4739
- Wer: 188.7957
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.464 | 0.61 | 1000 | 0.5444 | 201.0197 |
0.3774 | 1.22 | 2000 | 0.5003 | 180.8949 |
0.3566 | 1.82 | 3000 | 0.4796 | 195.6722 |
0.2962 | 2.43 | 4000 | 0.4739 | 188.7957 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.1