segment_test_1
This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1207
- Mean Iou: 0.8483
- Mean Accuracy: 0.9024
- Overall Accuracy: 0.9649
- Per Category Iou: [0.8797073511948335, 0.9320756407098275, 0.6346731005607217, 0.946842856578934]
- Per Category Accuracy: [0.9476937770534322, 0.9647476108381431, 0.722163329552671, 0.9748104445450901]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
1.0371 | 0.12 | 20 | 1.0895 | 0.4995 | 0.6430 | 0.8631 | [0.05521318178580855, 0.7743794151988705, 0.347543309879974, 0.8209439082840918] | [0.08660822249093107, 0.8923169863341743, 0.711708439278363, 0.8812568644974932] |
0.6908 | 0.25 | 40 | 0.5755 | 0.5230 | 0.6242 | 0.8926 | [0.023865281651135446, 0.8147455929204539, 0.3949463345707554, 0.858397589605038] | [0.02690009287979952, 0.9560483225800299, 0.618844995317415, 0.8951707417330758] |
0.7532 | 0.38 | 60 | 0.4352 | 0.5425 | 0.6362 | 0.9073 | [0.04830520945747081, 0.8390003744923147, 0.4011207931866636, 0.881716208435619] | [0.051771725987066926, 0.9667796831969788, 0.6132110672093029, 0.9128954438801464] |
0.4797 | 0.5 | 80 | 0.3928 | 0.5754 | 0.6651 | 0.9187 | [0.095160456358129, 0.8591208204996739, 0.4492600600843336, 0.8980719848369781] | [0.10522361249846661, 0.9658767606790423, 0.6592313641766187, 0.9299486923858831] |
0.4974 | 0.62 | 100 | 0.3413 | 0.5757 | 0.6564 | 0.9231 | [0.08465830140216431, 0.8655205765788001, 0.4482722747299048, 0.9043341709317356] | [0.08808466081348684, 0.9438250272055575, 0.6388503821434132, 0.9547541614780908] |
0.6012 | 0.75 | 120 | 0.3019 | 0.6256 | 0.7003 | 0.9309 | [0.20118898116264938, 0.8705267913237438, 0.5133711956715865, 0.9173562005725456] | [0.21758188318174648, 0.9550754656203344, 0.6747765579170281, 0.9537939455713355] |
0.4656 | 0.88 | 140 | 0.2558 | 0.6196 | 0.6831 | 0.9354 | [0.18448255342169326, 0.8799348242584422, 0.4896770706399499, 0.9242898593866574] | [0.18675411387413912, 0.957629264808883, 0.6245802352906291, 0.9633061744905276] |
0.3084 | 1.0 | 160 | 0.2720 | 0.6122 | 0.6959 | 0.9306 | [0.17521253603782794, 0.8710845346725691, 0.4824399357269581, 0.9201099745599581] | [0.18717908276816853, 0.9651212567854952, 0.6840404160211124, 0.9471146558242094] |
0.3281 | 1.12 | 180 | 0.2593 | 0.6599 | 0.7300 | 0.9387 | [0.3196354045076814, 0.8866606687882002, 0.5077873946739834, 0.9254476921045761] | [0.3419137619823704, 0.9647813859946743, 0.6571532354314773, 0.9563192436567626] |
0.5177 | 1.25 | 200 | 0.2349 | 0.7152 | 0.7782 | 0.9445 | [0.5227583225430057, 0.9035693700640127, 0.5129509983263923, 0.9217210470710874] | [0.5456644410563762, 0.9406031421756604, 0.6513240966564614, 0.9752501443811327] |
0.3315 | 1.38 | 220 | 0.2277 | 0.6762 | 0.7332 | 0.9435 | [0.3379172541018912, 0.8906873024131107, 0.5423203687425245, 0.93385833084482] | [0.3523035942729965, 0.9655347706627136, 0.650958385533654, 0.9641001079719775] |
0.7584 | 1.5 | 240 | 0.2096 | 0.7006 | 0.7579 | 0.9411 | [0.4065273757133468, 0.8956735509588918, 0.5836574037952176, 0.9166967934457825] | [0.4186732208261045, 0.9310246402349798, 0.702414928921078, 0.9793378276707719] |
0.4114 | 1.62 | 260 | 0.2266 | 0.7157 | 0.7832 | 0.9389 | [0.46836755859780127, 0.8939419126736278, 0.5910928241310868, 0.9094497536602162] | [0.5292527557261273, 0.9181066362487166, 0.7057063290263436, 0.9796145000506845] |
0.2829 | 1.75 | 280 | 0.1932 | 0.7515 | 0.8111 | 0.9512 | [0.5553894238891705, 0.9038650415073118, 0.6093098813145624, 0.9374419595745119] | [0.5760913376443579, 0.9716101928389251, 0.7359022068689445, 0.960860855647697] |
0.2271 | 1.88 | 300 | 0.1864 | 0.7921 | 0.8488 | 0.9557 | [0.72749813882911, 0.9128831336642784, 0.5892135224784095, 0.9387835557133554] | [0.7834695862467799, 0.9582075484693364, 0.682108077520874, 0.9715436644814973] |
0.2779 | 2.0 | 320 | 0.1712 | 0.8180 | 0.8901 | 0.9587 | [0.8078135832010197, 0.9212119018178146, 0.6029921836595201, 0.9400085237549578] | [0.8704261079859104, 0.9606214787743671, 0.7607928024097398, 0.9685803405441751] |
0.4342 | 2.12 | 340 | 0.1708 | 0.7761 | 0.8320 | 0.9548 | [0.6155968922409166, 0.9114185374153494, 0.6376315789473684, 0.939658585661896] | [0.640631845504092, 0.963783230780479, 0.7543977998028125, 0.9693606961542074] |
0.3321 | 2.25 | 360 | 0.1498 | 0.8358 | 0.8902 | 0.9617 | [0.8466817196643333, 0.9257548699292617, 0.6282106201058927, 0.9425208804748949] | [0.9010895851953105, 0.9624874568340255, 0.7247603727288228, 0.9726055284256458] |
0.2023 | 2.38 | 380 | 0.1489 | 0.8266 | 0.8892 | 0.9595 | [0.8245918770829803, 0.9218535979694774, 0.6204584829387099, 0.9396094918519875] | [0.8953634579324606, 0.9540908204687515, 0.7327368288397814, 0.9745457690515671] |
0.1612 | 2.5 | 400 | 0.1474 | 0.8319 | 0.8833 | 0.9614 | [0.8386504767201818, 0.9250884504372539, 0.6212118602838925, 0.9425717867382386] | [0.881909030369942, 0.9701526954959041, 0.7130847980310904, 0.9679183728130094] |
0.2084 | 2.62 | 420 | 0.1456 | 0.8373 | 0.9156 | 0.9617 | [0.8428293939804881, 0.9267780719611362, 0.6367325390207981, 0.9430187935498365] | [0.9257859733978234, 0.9552186457937082, 0.807640891445572, 0.9735885291166293] |
0.164 | 2.75 | 440 | 0.1284 | 0.8345 | 0.8808 | 0.9617 | [0.8596578459811758, 0.9255998505860551, 0.6105607176615363, 0.9421695191953943] | [0.9127433713614777, 0.9537728041909803, 0.6767583168392675, 0.9800493639325235] |
0.1297 | 2.88 | 460 | 0.1385 | 0.8449 | 0.9054 | 0.9635 | [0.8647724581323368, 0.9296026133121402, 0.6405698157260865, 0.9447385612148987] | [0.9357968385819182, 0.9633411073589047, 0.749796758514521, 0.9727959906219689] |
0.1775 | 3.0 | 480 | 0.1483 | 0.8312 | 0.9131 | 0.9615 | [0.8303105795421561, 0.9283098352535407, 0.6238329800678668, 0.9422278557852194] | [0.9462020048017104, 0.9651012565947649, 0.7745366217682133, 0.9665813244748572] |
0.2044 | 3.12 | 500 | 0.1337 | 0.8371 | 0.8944 | 0.9626 | [0.8455606368699817, 0.9275108345488315, 0.6310811541832109, 0.9440912228533584] | [0.9218363913569213, 0.9599956449915814, 0.7206757748504414, 0.9752020638364555] |
0.1668 | 3.25 | 520 | 0.1329 | 0.8441 | 0.9025 | 0.9629 | [0.8655859764078333, 0.9282151151180292, 0.6390094540302755, 0.9437038916825506] | [0.9213698017980128, 0.962867990264278, 0.7534242174893931, 0.9724944874772036] |
0.1279 | 3.38 | 540 | 0.1288 | 0.8347 | 0.8822 | 0.9624 | [0.8622657989592432, 0.9265309615800243, 0.6059068424468966, 0.9439998815395132] | [0.9212317964355187, 0.9664261698919513, 0.6689078828044113, 0.9723242060897683] |
0.2441 | 3.5 | 560 | 0.1289 | 0.8456 | 0.9119 | 0.9632 | [0.8699084528348765, 0.9296467606481729, 0.6388408116225611, 0.9439747399023978] | [0.9510540981020977, 0.9645672117667877, 0.7615761160984553, 0.9703859184453523] |
0.261 | 3.62 | 580 | 0.1373 | 0.8408 | 0.9059 | 0.9626 | [0.8702262323466258, 0.9285138712580321, 0.6209427648568083, 0.9435318648195579] | [0.9490453533813504, 0.9671653822394067, 0.7391515996155091, 0.9684196380660275] |
0.5753 | 3.75 | 600 | 0.1251 | 0.8458 | 0.8983 | 0.9627 | [0.8760502510695999, 0.9269758886426209, 0.6368816580927279, 0.9433603638703384] | [0.9298275590137217, 0.9542444643180703, 0.7302238003810314, 0.9788558132354487] |
0.1992 | 3.88 | 620 | 0.1289 | 0.8480 | 0.9126 | 0.9636 | [0.8658569991741146, 0.9291059762753285, 0.6517419325899511, 0.9451333803283866] | [0.9278188142929744, 0.9559565336252214, 0.7898717787151185, 0.9769391943858292] |
0.2911 | 4.0 | 640 | 0.1263 | 0.8451 | 0.8990 | 0.9623 | [0.8676994568324171, 0.9257222374094188, 0.6441978583675714, 0.9428325001046762] | [0.9276851900530992, 0.9481842740751965, 0.7380742344158877, 0.9821508650313081] |
0.2322 | 4.12 | 660 | 0.1234 | 0.8448 | 0.8923 | 0.9638 | [0.8776973476081853, 0.929274732930499, 0.626829659547631, 0.9455449914778657] | [0.9237794192383857, 0.968169497775343, 0.7048637108312268, 0.972200331262863] |
0.2316 | 4.25 | 680 | 0.1228 | 0.8493 | 0.9069 | 0.9642 | [0.8763959224746586, 0.9306747334769754, 0.64476604812217, 0.9454498311627832] | [0.9386358060389394, 0.9577756238205185, 0.753671319599398, 0.9776486846669562] |
0.2397 | 4.38 | 700 | 0.1262 | 0.8442 | 0.8963 | 0.9640 | [0.8718388103686404, 0.9303958268346455, 0.6286213954621487, 0.94588759466782] | [0.9306095894011882, 0.9690709633257429, 0.7141201558720109, 0.971342786383813] |
0.2163 | 4.5 | 720 | 0.1273 | 0.8438 | 0.8975 | 0.9635 | [0.8711635054714977, 0.9292374082869599, 0.6295386570878305, 0.945216509372582] | [0.9251331861276133, 0.9722796031962159, 0.724520683682118, 0.9680362026971605] |
0.1596 | 4.62 | 740 | 0.1207 | 0.8515 | 0.9108 | 0.9646 | [0.8777356406779111, 0.9314006904528226, 0.6507271627753556, 0.9461335840246559] | [0.9470848010094106, 0.9579392015394054, 0.7604592145612331, 0.9777115520716019] |
0.2282 | 4.75 | 760 | 0.1192 | 0.8504 | 0.9024 | 0.9650 | [0.8835435013923162, 0.9318821516960537, 0.6391197674041569, 0.947006215721923] | [0.9404013984543399, 0.9611932723067028, 0.7305820984405386, 0.9775071400073841] |
0.1647 | 4.88 | 780 | 0.1197 | 0.8518 | 0.9100 | 0.9647 | [0.8779367174977694, 0.9313115604274004, 0.6518294433470307, 0.9462412590163557] | [0.9526751134710758, 0.9568937611060662, 0.7517933435633607, 0.9786714889809993] |
0.1087 | 5.0 | 800 | 0.1207 | 0.8483 | 0.9024 | 0.9649 | [0.8797073511948335, 0.9320756407098275, 0.6346731005607217, 0.946842856578934] | [0.9476937770534322, 0.9647476108381431, 0.722163329552671, 0.9748104445450901] |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cpu
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 20