segment_test_1

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1207
  • Mean Iou: 0.8483
  • Mean Accuracy: 0.9024
  • Overall Accuracy: 0.9649
  • Per Category Iou: [0.8797073511948335, 0.9320756407098275, 0.6346731005607217, 0.946842856578934]
  • Per Category Accuracy: [0.9476937770534322, 0.9647476108381431, 0.722163329552671, 0.9748104445450901]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
1.0371 0.12 20 1.0895 0.4995 0.6430 0.8631 [0.05521318178580855, 0.7743794151988705, 0.347543309879974, 0.8209439082840918] [0.08660822249093107, 0.8923169863341743, 0.711708439278363, 0.8812568644974932]
0.6908 0.25 40 0.5755 0.5230 0.6242 0.8926 [0.023865281651135446, 0.8147455929204539, 0.3949463345707554, 0.858397589605038] [0.02690009287979952, 0.9560483225800299, 0.618844995317415, 0.8951707417330758]
0.7532 0.38 60 0.4352 0.5425 0.6362 0.9073 [0.04830520945747081, 0.8390003744923147, 0.4011207931866636, 0.881716208435619] [0.051771725987066926, 0.9667796831969788, 0.6132110672093029, 0.9128954438801464]
0.4797 0.5 80 0.3928 0.5754 0.6651 0.9187 [0.095160456358129, 0.8591208204996739, 0.4492600600843336, 0.8980719848369781] [0.10522361249846661, 0.9658767606790423, 0.6592313641766187, 0.9299486923858831]
0.4974 0.62 100 0.3413 0.5757 0.6564 0.9231 [0.08465830140216431, 0.8655205765788001, 0.4482722747299048, 0.9043341709317356] [0.08808466081348684, 0.9438250272055575, 0.6388503821434132, 0.9547541614780908]
0.6012 0.75 120 0.3019 0.6256 0.7003 0.9309 [0.20118898116264938, 0.8705267913237438, 0.5133711956715865, 0.9173562005725456] [0.21758188318174648, 0.9550754656203344, 0.6747765579170281, 0.9537939455713355]
0.4656 0.88 140 0.2558 0.6196 0.6831 0.9354 [0.18448255342169326, 0.8799348242584422, 0.4896770706399499, 0.9242898593866574] [0.18675411387413912, 0.957629264808883, 0.6245802352906291, 0.9633061744905276]
0.3084 1.0 160 0.2720 0.6122 0.6959 0.9306 [0.17521253603782794, 0.8710845346725691, 0.4824399357269581, 0.9201099745599581] [0.18717908276816853, 0.9651212567854952, 0.6840404160211124, 0.9471146558242094]
0.3281 1.12 180 0.2593 0.6599 0.7300 0.9387 [0.3196354045076814, 0.8866606687882002, 0.5077873946739834, 0.9254476921045761] [0.3419137619823704, 0.9647813859946743, 0.6571532354314773, 0.9563192436567626]
0.5177 1.25 200 0.2349 0.7152 0.7782 0.9445 [0.5227583225430057, 0.9035693700640127, 0.5129509983263923, 0.9217210470710874] [0.5456644410563762, 0.9406031421756604, 0.6513240966564614, 0.9752501443811327]
0.3315 1.38 220 0.2277 0.6762 0.7332 0.9435 [0.3379172541018912, 0.8906873024131107, 0.5423203687425245, 0.93385833084482] [0.3523035942729965, 0.9655347706627136, 0.650958385533654, 0.9641001079719775]
0.7584 1.5 240 0.2096 0.7006 0.7579 0.9411 [0.4065273757133468, 0.8956735509588918, 0.5836574037952176, 0.9166967934457825] [0.4186732208261045, 0.9310246402349798, 0.702414928921078, 0.9793378276707719]
0.4114 1.62 260 0.2266 0.7157 0.7832 0.9389 [0.46836755859780127, 0.8939419126736278, 0.5910928241310868, 0.9094497536602162] [0.5292527557261273, 0.9181066362487166, 0.7057063290263436, 0.9796145000506845]
0.2829 1.75 280 0.1932 0.7515 0.8111 0.9512 [0.5553894238891705, 0.9038650415073118, 0.6093098813145624, 0.9374419595745119] [0.5760913376443579, 0.9716101928389251, 0.7359022068689445, 0.960860855647697]
0.2271 1.88 300 0.1864 0.7921 0.8488 0.9557 [0.72749813882911, 0.9128831336642784, 0.5892135224784095, 0.9387835557133554] [0.7834695862467799, 0.9582075484693364, 0.682108077520874, 0.9715436644814973]
0.2779 2.0 320 0.1712 0.8180 0.8901 0.9587 [0.8078135832010197, 0.9212119018178146, 0.6029921836595201, 0.9400085237549578] [0.8704261079859104, 0.9606214787743671, 0.7607928024097398, 0.9685803405441751]
0.4342 2.12 340 0.1708 0.7761 0.8320 0.9548 [0.6155968922409166, 0.9114185374153494, 0.6376315789473684, 0.939658585661896] [0.640631845504092, 0.963783230780479, 0.7543977998028125, 0.9693606961542074]
0.3321 2.25 360 0.1498 0.8358 0.8902 0.9617 [0.8466817196643333, 0.9257548699292617, 0.6282106201058927, 0.9425208804748949] [0.9010895851953105, 0.9624874568340255, 0.7247603727288228, 0.9726055284256458]
0.2023 2.38 380 0.1489 0.8266 0.8892 0.9595 [0.8245918770829803, 0.9218535979694774, 0.6204584829387099, 0.9396094918519875] [0.8953634579324606, 0.9540908204687515, 0.7327368288397814, 0.9745457690515671]
0.1612 2.5 400 0.1474 0.8319 0.8833 0.9614 [0.8386504767201818, 0.9250884504372539, 0.6212118602838925, 0.9425717867382386] [0.881909030369942, 0.9701526954959041, 0.7130847980310904, 0.9679183728130094]
0.2084 2.62 420 0.1456 0.8373 0.9156 0.9617 [0.8428293939804881, 0.9267780719611362, 0.6367325390207981, 0.9430187935498365] [0.9257859733978234, 0.9552186457937082, 0.807640891445572, 0.9735885291166293]
0.164 2.75 440 0.1284 0.8345 0.8808 0.9617 [0.8596578459811758, 0.9255998505860551, 0.6105607176615363, 0.9421695191953943] [0.9127433713614777, 0.9537728041909803, 0.6767583168392675, 0.9800493639325235]
0.1297 2.88 460 0.1385 0.8449 0.9054 0.9635 [0.8647724581323368, 0.9296026133121402, 0.6405698157260865, 0.9447385612148987] [0.9357968385819182, 0.9633411073589047, 0.749796758514521, 0.9727959906219689]
0.1775 3.0 480 0.1483 0.8312 0.9131 0.9615 [0.8303105795421561, 0.9283098352535407, 0.6238329800678668, 0.9422278557852194] [0.9462020048017104, 0.9651012565947649, 0.7745366217682133, 0.9665813244748572]
0.2044 3.12 500 0.1337 0.8371 0.8944 0.9626 [0.8455606368699817, 0.9275108345488315, 0.6310811541832109, 0.9440912228533584] [0.9218363913569213, 0.9599956449915814, 0.7206757748504414, 0.9752020638364555]
0.1668 3.25 520 0.1329 0.8441 0.9025 0.9629 [0.8655859764078333, 0.9282151151180292, 0.6390094540302755, 0.9437038916825506] [0.9213698017980128, 0.962867990264278, 0.7534242174893931, 0.9724944874772036]
0.1279 3.38 540 0.1288 0.8347 0.8822 0.9624 [0.8622657989592432, 0.9265309615800243, 0.6059068424468966, 0.9439998815395132] [0.9212317964355187, 0.9664261698919513, 0.6689078828044113, 0.9723242060897683]
0.2441 3.5 560 0.1289 0.8456 0.9119 0.9632 [0.8699084528348765, 0.9296467606481729, 0.6388408116225611, 0.9439747399023978] [0.9510540981020977, 0.9645672117667877, 0.7615761160984553, 0.9703859184453523]
0.261 3.62 580 0.1373 0.8408 0.9059 0.9626 [0.8702262323466258, 0.9285138712580321, 0.6209427648568083, 0.9435318648195579] [0.9490453533813504, 0.9671653822394067, 0.7391515996155091, 0.9684196380660275]
0.5753 3.75 600 0.1251 0.8458 0.8983 0.9627 [0.8760502510695999, 0.9269758886426209, 0.6368816580927279, 0.9433603638703384] [0.9298275590137217, 0.9542444643180703, 0.7302238003810314, 0.9788558132354487]
0.1992 3.88 620 0.1289 0.8480 0.9126 0.9636 [0.8658569991741146, 0.9291059762753285, 0.6517419325899511, 0.9451333803283866] [0.9278188142929744, 0.9559565336252214, 0.7898717787151185, 0.9769391943858292]
0.2911 4.0 640 0.1263 0.8451 0.8990 0.9623 [0.8676994568324171, 0.9257222374094188, 0.6441978583675714, 0.9428325001046762] [0.9276851900530992, 0.9481842740751965, 0.7380742344158877, 0.9821508650313081]
0.2322 4.12 660 0.1234 0.8448 0.8923 0.9638 [0.8776973476081853, 0.929274732930499, 0.626829659547631, 0.9455449914778657] [0.9237794192383857, 0.968169497775343, 0.7048637108312268, 0.972200331262863]
0.2316 4.25 680 0.1228 0.8493 0.9069 0.9642 [0.8763959224746586, 0.9306747334769754, 0.64476604812217, 0.9454498311627832] [0.9386358060389394, 0.9577756238205185, 0.753671319599398, 0.9776486846669562]
0.2397 4.38 700 0.1262 0.8442 0.8963 0.9640 [0.8718388103686404, 0.9303958268346455, 0.6286213954621487, 0.94588759466782] [0.9306095894011882, 0.9690709633257429, 0.7141201558720109, 0.971342786383813]
0.2163 4.5 720 0.1273 0.8438 0.8975 0.9635 [0.8711635054714977, 0.9292374082869599, 0.6295386570878305, 0.945216509372582] [0.9251331861276133, 0.9722796031962159, 0.724520683682118, 0.9680362026971605]
0.1596 4.62 740 0.1207 0.8515 0.9108 0.9646 [0.8777356406779111, 0.9314006904528226, 0.6507271627753556, 0.9461335840246559] [0.9470848010094106, 0.9579392015394054, 0.7604592145612331, 0.9777115520716019]
0.2282 4.75 760 0.1192 0.8504 0.9024 0.9650 [0.8835435013923162, 0.9318821516960537, 0.6391197674041569, 0.947006215721923] [0.9404013984543399, 0.9611932723067028, 0.7305820984405386, 0.9775071400073841]
0.1647 4.88 780 0.1197 0.8518 0.9100 0.9647 [0.8779367174977694, 0.9313115604274004, 0.6518294433470307, 0.9462412590163557] [0.9526751134710758, 0.9568937611060662, 0.7517933435633607, 0.9786714889809993]
0.1087 5.0 800 0.1207 0.8483 0.9024 0.9649 [0.8797073511948335, 0.9320756407098275, 0.6346731005607217, 0.946842856578934] [0.9476937770534322, 0.9647476108381431, 0.722163329552671, 0.9748104445450901]

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cpu
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
20
Inference API
Unable to determine this model’s pipeline type. Check the docs .