Edit model card

wav2vec2_common_voice_accents_indian_only_rerun

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2807

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 48
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 384
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 588
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.6205 25.0 400 1.4584
0.3427 50.0 800 1.8377
0.1213 75.0 1200 1.6086
0.0643 100.0 1600 1.5136
0.0433 125.0 2000 1.4882
0.0323 150.0 2400 1.2204
0.0265 175.0 2800 1.3034
0.0206 200.0 3200 1.2866
0.0191 225.0 3600 1.2337
0.0148 250.0 4000 1.1729
0.0121 275.0 4400 1.2059
0.0105 300.0 4800 1.1246
0.01 325.0 5200 1.1397
0.0098 350.0 5600 1.1684
0.0073 375.0 6000 1.1030
0.0061 400.0 6400 1.2077
0.0049 425.0 6800 1.2653
0.0044 450.0 7200 1.1587
0.0037 475.0 7600 1.2283
0.0033 500.0 8000 1.1897
0.0026 525.0 8400 1.2633
0.0023 550.0 8800 1.2571
0.002 575.0 9200 1.2807

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train willcai/wav2vec2_common_voice_accents_indian_only_rerun