Edit model card

constituency-brackets-20

This model is a fine-tuned version of allegro/herbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2020
  • Train Acc: 0.9356
  • Validation Loss: 0.2929
  • Validation Acc: 0.9120
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 5e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Acc Validation Loss Validation Acc Epoch
2.4703 0.3783 1.4719 0.5858 0
1.2149 0.6600 0.8922 0.7269 1
0.8721 0.7343 0.6914 0.7779 2
0.7186 0.7715 0.6028 0.8037 3
0.6239 0.7987 0.5427 0.8240 4
0.5432 0.8342 0.4469 0.8677 5
0.4521 0.8665 0.4092 0.8760 6
0.4100 0.8761 0.3867 0.8819 7
0.3792 0.8855 0.3761 0.8849 8
0.3526 0.8926 0.3469 0.8938 9
0.3304 0.8981 0.3433 0.8944 10
0.3091 0.9049 0.3329 0.8977 11
0.2935 0.9081 0.3178 0.9028 12
0.2769 0.9138 0.3140 0.9032 13
0.2614 0.9173 0.2994 0.9114 14
0.2472 0.9213 0.2954 0.9128 15
0.2344 0.9260 0.2899 0.9142 16
0.2229 0.9292 0.2971 0.9092 17
0.2136 0.9322 0.2872 0.9143 18
0.2020 0.9356 0.2929 0.9120 19

Framework versions

  • Transformers 4.26.0
  • TensorFlow 2.9.2
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wolinski/constituency-brackets-20

Finetuned
(2)
this model