A model fine-tuned for sentiment analysis based on vinai/phobert-base.
Labels:
- NEG: Negative
- POS: Positive
- NEU: Neutral
Dataset: 30K e-commerce reviews
Usage
import torch
from transformers import RobertaForSequenceClassification, AutoTokenizer
model = RobertaForSequenceClassification.from_pretrained("wonrax/phobert-base-vietnamese-sentiment")
tokenizer = AutoTokenizer.from_pretrained("wonrax/phobert-base-vietnamese-sentiment", use_fast=False)
# Just like PhoBERT: INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
sentence = 'Đây là mô_hình rất hay , phù_hợp với điều_kiện và như cầu của nhiều người .'
input_ids = torch.tensor([tokenizer.encode(sentence)])
with torch.no_grad():
out = model(input_ids)
print(out.logits.softmax(dim=-1).tolist())
# Output:
# [[0.002, 0.988, 0.01]]
# ^ ^ ^
# NEG POS NEU
- Downloads last month
- 1,802
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.