metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100006
- loss:CachedMultipleNegativesRankingLoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: how much weight can you lose in a week healthy?
sentences:
- Biology
- >-
Summary: According to experts, losing 1–2 pounds (0.45–0.9 kg) per week
is a healthy and safe rate, while losing more than this is considered
too fast. However, you may lose more than that during your first week of
an exercise or diet plan.
- >-
The number of valence electrons is the number of electrons in the outer
shell, that the atom uses for bonding. Nitrogen has 5 electrons in its
n=2 (outer) shell.
- source_sentence: how long after having a baby can i get a tattoo?
sentences:
- >-
It is suggested that mothers wait at least until 9-12 months after
birth, when the child is no longer dependent solely on breastmilk before
getting a tattoo. Reputable tattoo artists will have a waiver for the
client to sign that asks about pregnancy and breastfeeding.
- Medicine
- >-
Americans on average are down to 44 gallons of soda per year, and up to
about 58 gallons of water. That's 7,242 ounces of water annually -- 20
ounces daily, which is 2.5 cups.
- source_sentence: is all uhmw anti static?
sentences:
- >-
The bacteria Streptococcus pyogenes causes it. It's most common in
infants and children, but it frequently occurs in teenagers and adults
as well. It causes white streaks or spots in the throat.
- Chemistry
- >-
UHMW is available in a special anti-static grade that helps protect
against EsD (static discharge) or to help keep dust and particles from
building up on the product surface. The anti-static additives are
built-in so the anti-static properties will last throughout the life of
the material.
- source_sentence: is closing cost tax deductible?
sentences:
- Medicine
- >-
1 tablespoon (tbsp) of granulated sugar equals to 12.5998 grams (g) in
granulated sugar mass.
- >-
In general, the only settlement or closing costs you can deduct are home
mortgage interest and certain real estate taxes. You deduct them in the
year you buy your home if you itemize your deductions. ... See IRS
Publication 530, "Tax Information for Homeowners" and look for
"Settlement or closing costs" for more details.
- source_sentence: what is the connection between cancer and the cell cycle?
sentences:
- Biology
- >-
Conclusion. Cancer is unchecked cell growth. Mutations in genes can
cause cancer by accelerating cell division rates or inhibiting normal
controls on the system, such as cell cycle arrest or programmed cell
death. As a mass of cancerous cells grows, it can develop into a tumor.
- >-
Your vomit may appear black if the blood has been oxidized by the acids
in your stomach. The iron in your blood turns brown to black with time.
Since the blood is no longer bright red, it means that the bleeding has
either stopped or is only happening in a small amount.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on answerdotai/ModernBERT-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.18
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.24
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.34
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04800000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.034
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.15
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.31
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.19343658524041285
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.16590476190476192
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.17642959153410534
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.28
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.52
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.052000000000000005
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.28
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.52
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2984940860938879
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2304365079365079
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.24691442502099614
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.11
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.43000000000000005
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.11
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.064
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.043000000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21500000000000002
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.305
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.41500000000000004
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.24596533566715037
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1981706349206349
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21167200827755073
name: Cosine Map@100
SentenceTransformer based on answerdotai/ModernBERT-base
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'what is the connection between cancer and the cell cycle?',
'Conclusion. Cancer is unchecked cell growth. Mutations in genes can cause cancer by accelerating cell division rates or inhibiting normal controls on the system, such as cell cycle arrest or programmed cell death. As a mass of cancerous cells grows, it can develop into a tumor.',
'Biology',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
NanoNQ
andNanoMSMARCO
- Evaluated with
InformationRetrievalEvaluator
Metric | NanoNQ | NanoMSMARCO |
---|---|---|
cosine_accuracy@1 | 0.1 | 0.12 |
cosine_accuracy@3 | 0.18 | 0.28 |
cosine_accuracy@5 | 0.24 | 0.4 |
cosine_accuracy@10 | 0.34 | 0.52 |
cosine_precision@1 | 0.1 | 0.12 |
cosine_precision@3 | 0.06 | 0.0933 |
cosine_precision@5 | 0.048 | 0.08 |
cosine_precision@10 | 0.034 | 0.052 |
cosine_recall@1 | 0.1 | 0.12 |
cosine_recall@3 | 0.15 | 0.28 |
cosine_recall@5 | 0.21 | 0.4 |
cosine_recall@10 | 0.31 | 0.52 |
cosine_ndcg@10 | 0.1934 | 0.2985 |
cosine_mrr@10 | 0.1659 | 0.2304 |
cosine_map@100 | 0.1764 | 0.2469 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
NanoBEIREvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.11 |
cosine_accuracy@3 | 0.23 |
cosine_accuracy@5 | 0.32 |
cosine_accuracy@10 | 0.43 |
cosine_precision@1 | 0.11 |
cosine_precision@3 | 0.0767 |
cosine_precision@5 | 0.064 |
cosine_precision@10 | 0.043 |
cosine_recall@1 | 0.11 |
cosine_recall@3 | 0.215 |
cosine_recall@5 | 0.305 |
cosine_recall@10 | 0.415 |
cosine_ndcg@10 | 0.246 |
cosine_mrr@10 | 0.1982 |
cosine_map@100 | 0.2117 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 100,006 training samples
- Columns:
question
,answer
, andcategory
- Approximate statistics based on the first 1000 samples:
question answer category type string string string details - min: 8 tokens
- mean: 11.91 tokens
- max: 20 tokens
- min: 16 tokens
- mean: 57.49 tokens
- max: 136 tokens
- min: 4 tokens
- mean: 4.0 tokens
- max: 4 tokens
- Samples:
question answer category how many times a week should you use heat on your hair?
Don't style hair with heat every day. Hot tools can also make hair look crispy and create split ends if overused. Blow out hair 3-5 times a week and try to limit your flat iron/curling iron usage to 1-2 times a week.”
Medicine
do african violets like to be root bound?
African violets only bloom when they're root bound. When it is time to repot, be sure to use an organic potting soil made specifically for African violets, such as Espoma's African Violet Mix. They flower best in small pots — choose one that's about a third of the diameter of their leaf spread.
Biology
is pgwp exempt from lmia?
The PGWP is exempt from Labour Market Impact Assessment (LMIA) requirements. The candidate must have attended a recognized post-secondary school, or a secondary school that offers qualifying programs, for at least eight months.
Medicine
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 0.0001num_train_epochs
: 1warmup_ratio
: 0.05bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
---|---|---|---|---|---|
0 | 0 | - | 0.0388 | 0.0863 | 0.0626 |
0.0763 | 10 | 0.5482 | - | - | - |
0.1527 | 20 | 0.1079 | - | - | - |
0.2290 | 30 | 0.1491 | - | - | - |
0.3053 | 40 | 0.1381 | - | - | - |
0.3817 | 50 | 0.0873 | 0.0909 | 0.2197 | 0.1553 |
0.4580 | 60 | 0.133 | - | - | - |
0.5344 | 70 | 0.0539 | - | - | - |
0.6107 | 80 | 0.029 | - | - | - |
0.6870 | 90 | 0.0008 | - | - | - |
0.7634 | 100 | 0.0997 | 0.1982 | 0.2657 | 0.2320 |
0.8397 | 110 | 0.04 | - | - | - |
0.9160 | 120 | 0.0053 | - | - | - |
0.9924 | 130 | 0.0095 | - | - | - |
1.0 | 131 | - | 0.1934 | 0.2985 | 0.2460 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}