wwydmanski's picture
Upload folder using huggingface_hub
9dcaea4 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10053
  - loss:MultipleNegativesRankingLoss
base_model: allenai/specter2_base
widget:
  - source_sentence: Fluorescence quenching of tryptophan residues
    sentences:
      - 'Fluorescence of buried tyrosine residues in proteins. '
      - >-
        A fluorescence quenching study of tryptophanyl residues of (Ca2+ +
        Mg2+)-ATPase from sarcoplasmic reticulum. 
      - 'Some hormonal influences on the acetylation of sulfanilamide in vivo. '
  - source_sentence: Human migration to the Americas
    sentences:
      - >-
        Homo sapiens in the Americas. Overview of the earliest human expansion
        in the New World. 
      - >-
        Profiles of College Drinkers Defined by Alcohol Behaviors at the Week
        Level: Replication Across Semesters and Prospective Associations With
        Hazardous Drinking and Dependence-Related Symptoms. 
      - 'Human migration. '
  - source_sentence: Human Mobility Prediction
    sentences:
      - 'Human mobility prediction from region functions with taxi trajectories. '
      - 'Understanding Human Mobility from Twitter. '
      - >-
        Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the
        HSV-tk gene. 
  - source_sentence: Nevirapine Resistance
    sentences:
      - 'Nevirapine toxicity. '
      - 'Recognizing rhenium. '
      - 'Update on nevirapine: quest for a niche. '
  - source_sentence: EHL tendon reconstruction
    sentences:
      - >-
        A Combined Surgical Approach for Extensor Hallucis Longus
        Reconstruction: Two Case Reports. 
      - 'Flexor tendon reconstruction. '
      - 'Noble gases and neuroprotection: summary of current evidence. '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
model-index:
  - name: SentenceTransformer based on allenai/specter2_base
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: triplet dev
          type: triplet-dev
        metrics:
          - type: cosine_accuracy
            value: 0.573
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.455
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.576
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.577
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.577
            name: Max Accuracy

SentenceTransformer based on allenai/specter2_base

This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: allenai/specter2_base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'EHL tendon reconstruction',
    'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ',
    'Flexor tendon reconstruction. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.573
dot_accuracy 0.455
manhattan_accuracy 0.576
euclidean_accuracy 0.577
max_accuracy 0.577

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 10,053 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 7.54 tokens
    • max: 24 tokens
    • min: 4 tokens
    • mean: 20.11 tokens
    • max: 63 tokens
    • min: 3 tokens
    • mean: 12.36 tokens
    • max: 48 tokens
  • Samples:
    anchor positive negative
    COM-induced secretome changes in U937 monocytes Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Monocytes.
    Metamaterials Sound attenuation optimization using metaporous materials tuned on exceptional points. Metamaterials: A cat's eye for all directions.
    Pediatric Parasitology Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. [DIALOGUE ON PEDIATRIC PARASITOLOGY].
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • learning_rate: 0.001
  • num_train_epochs: 1
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss triplet-dev_cosine_accuracy
0 0 - 0.373
0.05 1 4.5633 -
0.1 2 4.5857 -
0.15 3 4.1852 -
0.2 4 3.2547 -
0.25 5 2.3117 -
0.3 6 1.949 -
0.35 7 1.7767 -
0.4 8 1.79 -
0.45 9 1.6081 -
0.5 10 1.7499 -
0.55 11 1.6395 -
0.6 12 1.5645 -
0.65 13 1.5804 -
0.7 14 1.5303 -
0.75 15 1.5452 -
0.8 16 1.5012 -
0.85 17 1.5283 -
0.9 18 1.5982 -
0.95 19 1.4714 -
1.0 20 1.3331 0.573

Framework Versions

  • Python: 3.9.19
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.0
  • Accelerate: 1.0.1
  • Datasets: 2.19.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}