wzChen's picture
End of training
06da7ad verified
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - wnut_17
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_wnut_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wnut_17
          type: wnut_17
          config: wnut_17
          split: test
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0.558252427184466
          - name: Recall
            type: recall
            value: 0.4263206672845227
          - name: F1
            type: f1
            value: 0.48344718864950076
          - name: Accuracy
            type: accuracy
            value: 0.9477576845795391

my_awesome_wnut_model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4207
  • Precision: 0.5583
  • Recall: 0.4263
  • F1: 0.4834
  • Accuracy: 0.9478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 213 0.3267 0.5351 0.4235 0.4728 0.9472
No log 2.0 426 0.3741 0.4730 0.3818 0.4226 0.9428
0.0126 3.0 639 0.3431 0.5336 0.4189 0.4694 0.9466
0.0126 4.0 852 0.3790 0.5983 0.3920 0.4737 0.9477
0.008 5.0 1065 0.3610 0.5289 0.4328 0.4760 0.9472
0.008 6.0 1278 0.3580 0.5637 0.4347 0.4908 0.9477
0.008 7.0 1491 0.3569 0.5339 0.4458 0.4859 0.9474
0.0049 8.0 1704 0.3988 0.5602 0.4013 0.4676 0.9470
0.0049 9.0 1917 0.4180 0.5901 0.3976 0.4751 0.9471
0.0032 10.0 2130 0.3969 0.5320 0.4161 0.4670 0.9468
0.0032 11.0 2343 0.4265 0.5851 0.4013 0.4761 0.9473
0.003 12.0 2556 0.4003 0.5569 0.4263 0.4829 0.9475
0.003 13.0 2769 0.4234 0.5936 0.3967 0.4756 0.9480
0.003 14.0 2982 0.4016 0.5482 0.4272 0.4802 0.9482
0.002 15.0 3195 0.4312 0.5655 0.4041 0.4714 0.9471
0.002 16.0 3408 0.4310 0.5611 0.4087 0.4729 0.9470
0.0014 17.0 3621 0.4287 0.5556 0.4124 0.4734 0.9471
0.0014 18.0 3834 0.4193 0.5572 0.4198 0.4789 0.9475
0.0014 19.0 4047 0.4188 0.5583 0.4263 0.4834 0.9478
0.0014 20.0 4260 0.4207 0.5583 0.4263 0.4834 0.9478

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2