PPO (Proximal Policy Optimization) Agent playing LunarLander-v2
This is a trained model of a PPO (Proximal Policy Optimization) agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
import gymnasium
from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
repo_id = "xXrobroXx/ppo-LunarLander-v2" # The repo_id
filename = "ppo-LunarLander-v2.zip" # The model filename.zip
# When the model was trained on Python 3.8 the pickle protocol is 5
# But Python 3.6, 3.7 use protocol 4
# In order to get compatibility we need to:
# 1. Install pickle5
# 2. Create a custom empty object we pass as parameter to PPO.load()
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
# evaluate model in test environment
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
- Downloads last month
- 1
Evaluation results
- mean_reward on LunarLander-v2self-reported262.09 +/- 24.76