Edit model card

model trenovan na de setu, nastaveni jazyka de

This model is a fine-tuned version of openai/whisper-medium on the xbilek25/train_set_1st_1000_de_en_de dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1983
  • Wer: 48.1320

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0468 1.25 1000 0.1860 27.8659
0.0034 3.25 2000 0.1983 48.1320

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for xbilek25/w-m-lang_de-set_de

Finetuned
(453)
this model

Dataset used to train xbilek25/w-m-lang_de-set_de

Evaluation results