xbilek25's picture
End of training
598d144 verified
metadata
language:
  - multilingual
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: TMP prvontni trenovani jazyk en, train en de en similar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: xbilek25/train_set_1st_1000_de_en_de
          type: mozilla-foundation/common_voice_11_0
          args: 'config: ende, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 17.387261738726174

TMP prvontni trenovani jazyk en, train en de en similar

This model is a fine-tuned version of openai/whisper-medium on the xbilek25/train_set_1st_1000_de_en_de dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3401
  • Wer: 17.3873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0979 1.12 500 0.2481 19.0875
0.0097 3.12 1000 0.2917 16.7763
0.0017 5.12 1500 0.3298 16.9689
0.0011 7.12 2000 0.3401 17.3873

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2