File size: 2,974 Bytes
5547762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ast-finetuned-audioset-10-10-0.4593_ft_env_0-12
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-finetuned-audioset-10-10-0.4593_ft_env_0-12
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3804
- Accuracy: 0.9643
- Precision: 0.9702
- Recall: 0.9643
- F1: 0.9643
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 56
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 2.0371 | 1.0 | 28 | 1.9267 | 0.1429 | 0.3214 | 0.1429 | 0.1482 |
| 1.7315 | 2.0 | 56 | 1.5823 | 0.3214 | 0.3667 | 0.3214 | 0.2973 |
| 1.3081 | 3.0 | 84 | 1.2250 | 0.75 | 0.8423 | 0.75 | 0.7499 |
| 0.9664 | 4.0 | 112 | 0.9526 | 0.8214 | 0.8616 | 0.8214 | 0.8078 |
| 0.6607 | 5.0 | 140 | 0.7525 | 0.8571 | 0.8795 | 0.8571 | 0.8520 |
| 0.5239 | 6.0 | 168 | 0.6080 | 0.8929 | 0.9152 | 0.8929 | 0.8866 |
| 0.453 | 7.0 | 196 | 0.5089 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
| 0.323 | 8.0 | 224 | 0.4353 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
| 0.296 | 9.0 | 252 | 0.3804 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
| 0.2167 | 10.0 | 280 | 0.3382 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
| 0.186 | 11.0 | 308 | 0.3157 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
| 0.1748 | 12.0 | 336 | 0.2931 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
| 0.1367 | 13.0 | 364 | 0.2781 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
| 0.1469 | 14.0 | 392 | 0.2705 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
| 0.1308 | 15.0 | 420 | 0.2679 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.10.1
- Tokenizers 0.11.0
|