File size: 2,974 Bytes
5547762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ast-finetuned-audioset-10-10-0.4593_ft_env_0-12
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-finetuned-audioset-10-10-0.4593_ft_env_0-12

This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3804
- Accuracy: 0.9643
- Precision: 0.9702
- Recall: 0.9643
- F1: 0.9643

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 56
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 2.0371        | 1.0   | 28   | 1.9267          | 0.1429   | 0.3214    | 0.1429 | 0.1482 |
| 1.7315        | 2.0   | 56   | 1.5823          | 0.3214   | 0.3667    | 0.3214 | 0.2973 |
| 1.3081        | 3.0   | 84   | 1.2250          | 0.75     | 0.8423    | 0.75   | 0.7499 |
| 0.9664        | 4.0   | 112  | 0.9526          | 0.8214   | 0.8616    | 0.8214 | 0.8078 |
| 0.6607        | 5.0   | 140  | 0.7525          | 0.8571   | 0.8795    | 0.8571 | 0.8520 |
| 0.5239        | 6.0   | 168  | 0.6080          | 0.8929   | 0.9152    | 0.8929 | 0.8866 |
| 0.453         | 7.0   | 196  | 0.5089          | 0.9286   | 0.9286    | 0.9286 | 0.9286 |
| 0.323         | 8.0   | 224  | 0.4353          | 0.9286   | 0.9286    | 0.9286 | 0.9286 |
| 0.296         | 9.0   | 252  | 0.3804          | 0.9643   | 0.9702    | 0.9643 | 0.9643 |
| 0.2167        | 10.0  | 280  | 0.3382          | 0.9643   | 0.9702    | 0.9643 | 0.9643 |
| 0.186         | 11.0  | 308  | 0.3157          | 0.9643   | 0.9702    | 0.9643 | 0.9643 |
| 0.1748        | 12.0  | 336  | 0.2931          | 0.9643   | 0.9702    | 0.9643 | 0.9643 |
| 0.1367        | 13.0  | 364  | 0.2781          | 0.9643   | 0.9702    | 0.9643 | 0.9643 |
| 0.1469        | 14.0  | 392  | 0.2705          | 0.9643   | 0.9702    | 0.9643 | 0.9643 |
| 0.1308        | 15.0  | 420  | 0.2679          | 0.9643   | 0.9702    | 0.9643 | 0.9643 |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.10.1
- Tokenizers 0.11.0