metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- type: accuracy
value: 0.9303225806451613
name: Accuracy
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.0332
- Accuracy: 0.9303
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4409 | 1.0 | 318 | 0.2288 | 0.6206 |
0.1898 | 2.0 | 636 | 0.1106 | 0.8461 |
0.116 | 3.0 | 954 | 0.0729 | 0.8994 |
0.0861 | 4.0 | 1272 | 0.0548 | 0.9097 |
0.0707 | 5.0 | 1590 | 0.0454 | 0.9184 |
0.0613 | 6.0 | 1908 | 0.0399 | 0.9239 |
0.0557 | 7.0 | 2226 | 0.0371 | 0.9294 |
0.0522 | 8.0 | 2544 | 0.0348 | 0.93 |
0.05 | 9.0 | 2862 | 0.0336 | 0.9297 |
0.0487 | 10.0 | 3180 | 0.0332 | 0.9303 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0
- Datasets 2.4.0
- Tokenizers 0.10.3