qwen_cCPO_entropy
This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.4698
- Rewards/chosen: -1.7544
- Rewards/rejected: -2.3724
- Rewards/accuracies: 0.6840
- Rewards/margins: 0.6180
- Logps/rejected: -2.3724
- Logps/chosen: -1.7544
- Logits/rejected: 0.2213
- Logits/chosen: 0.1180
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.547 | 0.2141 | 400 | 0.5455 | -1.3437 | -1.4812 | 0.5579 | 0.1374 | -1.4812 | -1.3437 | 0.3541 | 0.2674 |
0.5301 | 0.4282 | 800 | 0.5165 | -1.3889 | -1.6415 | 0.5927 | 0.2526 | -1.6415 | -1.3889 | 0.4272 | 0.3345 |
0.5265 | 0.6422 | 1200 | 0.4985 | -1.4579 | -1.8204 | 0.6224 | 0.3625 | -1.8204 | -1.4579 | 0.3699 | 0.2760 |
0.4765 | 0.8563 | 1600 | 0.4935 | -1.4994 | -1.8829 | 0.6380 | 0.3836 | -1.8829 | -1.4994 | 0.3198 | 0.2257 |
0.5542 | 1.0704 | 2000 | 0.4872 | -1.4687 | -1.8582 | 0.6372 | 0.3895 | -1.8582 | -1.4687 | 0.3054 | 0.2090 |
0.4732 | 1.2845 | 2400 | 0.4775 | -1.6420 | -2.1625 | 0.6669 | 0.5204 | -2.1625 | -1.6420 | 0.3805 | 0.2752 |
0.5055 | 1.4986 | 2800 | 0.4755 | -1.6156 | -2.1129 | 0.6639 | 0.4973 | -2.1129 | -1.6156 | 0.4048 | 0.2981 |
0.4945 | 1.7127 | 3200 | 0.4738 | -1.5940 | -2.0956 | 0.6677 | 0.5016 | -2.0956 | -1.5940 | 0.3909 | 0.2834 |
0.4619 | 1.9267 | 3600 | 0.4700 | -1.6914 | -2.2530 | 0.6728 | 0.5617 | -2.2530 | -1.6914 | 0.3536 | 0.2473 |
0.4109 | 2.1408 | 4000 | 0.4699 | -1.7062 | -2.2883 | 0.6780 | 0.5822 | -2.2883 | -1.7062 | 0.3677 | 0.2556 |
0.4282 | 2.3549 | 4400 | 0.4707 | -1.7749 | -2.3952 | 0.6877 | 0.6202 | -2.3952 | -1.7749 | 0.2280 | 0.1239 |
0.4299 | 2.5690 | 4800 | 0.4704 | -1.7425 | -2.3507 | 0.6803 | 0.6082 | -2.3507 | -1.7425 | 0.3027 | 0.1929 |
0.4414 | 2.7831 | 5200 | 0.4698 | -1.7506 | -2.3686 | 0.6847 | 0.6181 | -2.3686 | -1.7506 | 0.2344 | 0.1302 |
0.404 | 2.9972 | 5600 | 0.4698 | -1.7544 | -2.3724 | 0.6840 | 0.6180 | -2.3724 | -1.7544 | 0.2213 | 0.1180 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.