metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
- alignment-handbook
- trl
- simpo
- generated_from_trainer
- trl
- simpo
- generated_from_trainer
datasets:
- yakazimir/ultrafeedback_binarized
model-index:
- name: qwen_ce_entropy_0_0
results: []
qwen_ce_entropy_0_0
This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 1.2625
- Rewards/chosen: -1.2622
- Rewards/rejected: -1.3865
- Rewards/accuracies: 0.5467
- Rewards/margins: 0.1243
- Logps/rejected: -1.3865
- Logps/chosen: -1.2622
- Logits/rejected: 0.0855
- Logits/chosen: 0.0231
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
1.2909 | 0.2141 | 400 | 1.3232 | -1.3229 | -1.4423 | 0.5549 | 0.1194 | -1.4423 | -1.3229 | 0.3582 | 0.2751 |
1.2587 | 0.4282 | 800 | 1.2927 | -1.2925 | -1.4166 | 0.5504 | 0.1242 | -1.4166 | -1.2925 | 0.3302 | 0.2542 |
1.2174 | 0.6422 | 1200 | 1.2838 | -1.2835 | -1.4045 | 0.5490 | 0.1210 | -1.4045 | -1.2835 | 0.2712 | 0.2000 |
1.2991 | 0.8563 | 1600 | 1.2773 | -1.2770 | -1.3983 | 0.5467 | 0.1213 | -1.3983 | -1.2770 | 0.2519 | 0.1821 |
1.2615 | 1.0704 | 2000 | 1.2727 | -1.2724 | -1.3955 | 0.5490 | 0.1231 | -1.3955 | -1.2724 | 0.1950 | 0.1280 |
1.1889 | 1.2845 | 2400 | 1.2689 | -1.2686 | -1.3926 | 0.5475 | 0.1239 | -1.3926 | -1.2686 | 0.1649 | 0.0990 |
1.2782 | 1.4986 | 2800 | 1.2663 | -1.2660 | -1.3882 | 0.5482 | 0.1222 | -1.3882 | -1.2660 | 0.1472 | 0.0825 |
1.225 | 1.7127 | 3200 | 1.2649 | -1.2646 | -1.3872 | 0.5460 | 0.1226 | -1.3872 | -1.2646 | 0.1561 | 0.0901 |
1.1621 | 1.9267 | 3600 | 1.2636 | -1.2633 | -1.3851 | 0.5475 | 0.1218 | -1.3851 | -1.2633 | 0.1670 | 0.0991 |
1.1574 | 2.1408 | 4000 | 1.2633 | -1.2630 | -1.3882 | 0.5467 | 0.1252 | -1.3882 | -1.2630 | 0.1189 | 0.0543 |
1.1513 | 2.3549 | 4400 | 1.2630 | -1.2627 | -1.3868 | 0.5453 | 0.1241 | -1.3868 | -1.2627 | 0.1222 | 0.0567 |
1.1366 | 2.5690 | 4800 | 1.2624 | -1.2622 | -1.3866 | 0.5475 | 0.1244 | -1.3866 | -1.2622 | 0.1424 | 0.0753 |
1.1253 | 2.7831 | 5200 | 1.2627 | -1.2624 | -1.3865 | 0.5475 | 0.1241 | -1.3865 | -1.2624 | 0.1178 | 0.0528 |
1.1657 | 2.9972 | 5600 | 1.2625 | -1.2622 | -1.3865 | 0.5467 | 0.1243 | -1.3865 | -1.2622 | 0.0855 | 0.0231 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1