qwen_ce_entropy_0_0 / README.md
yakazimir's picture
End of training
73a6020 verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_ce_entropy_0_0
    results: []

qwen_ce_entropy_0_0

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2625
  • Rewards/chosen: -1.2622
  • Rewards/rejected: -1.3865
  • Rewards/accuracies: 0.5467
  • Rewards/margins: 0.1243
  • Logps/rejected: -1.3865
  • Logps/chosen: -1.2622
  • Logits/rejected: 0.0855
  • Logits/chosen: 0.0231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.2909 0.2141 400 1.3232 -1.3229 -1.4423 0.5549 0.1194 -1.4423 -1.3229 0.3582 0.2751
1.2587 0.4282 800 1.2927 -1.2925 -1.4166 0.5504 0.1242 -1.4166 -1.2925 0.3302 0.2542
1.2174 0.6422 1200 1.2838 -1.2835 -1.4045 0.5490 0.1210 -1.4045 -1.2835 0.2712 0.2000
1.2991 0.8563 1600 1.2773 -1.2770 -1.3983 0.5467 0.1213 -1.3983 -1.2770 0.2519 0.1821
1.2615 1.0704 2000 1.2727 -1.2724 -1.3955 0.5490 0.1231 -1.3955 -1.2724 0.1950 0.1280
1.1889 1.2845 2400 1.2689 -1.2686 -1.3926 0.5475 0.1239 -1.3926 -1.2686 0.1649 0.0990
1.2782 1.4986 2800 1.2663 -1.2660 -1.3882 0.5482 0.1222 -1.3882 -1.2660 0.1472 0.0825
1.225 1.7127 3200 1.2649 -1.2646 -1.3872 0.5460 0.1226 -1.3872 -1.2646 0.1561 0.0901
1.1621 1.9267 3600 1.2636 -1.2633 -1.3851 0.5475 0.1218 -1.3851 -1.2633 0.1670 0.0991
1.1574 2.1408 4000 1.2633 -1.2630 -1.3882 0.5467 0.1252 -1.3882 -1.2630 0.1189 0.0543
1.1513 2.3549 4400 1.2630 -1.2627 -1.3868 0.5453 0.1241 -1.3868 -1.2627 0.1222 0.0567
1.1366 2.5690 4800 1.2624 -1.2622 -1.3866 0.5475 0.1244 -1.3866 -1.2622 0.1424 0.0753
1.1253 2.7831 5200 1.2627 -1.2624 -1.3865 0.5475 0.1241 -1.3865 -1.2624 0.1178 0.0528
1.1657 2.9972 5600 1.2625 -1.2622 -1.3865 0.5467 0.1243 -1.3865 -1.2622 0.0855 0.0231

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1