yakazimir's picture
End of training
d6c4c57 verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_cpo_entropy_0_3
    results: []

qwen_cpo_entropy_0_3

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0416
  • Sft Loss: 1.4031
  • Rewards/chosen: -1.3990
  • Rewards/rejected: -1.8440
  • Rewards/accuracies: 0.6157
  • Rewards/margins: 0.4450
  • Logps/rejected: -1.8440
  • Logps/chosen: -1.3990
  • Logits/rejected: 0.2187
  • Logits/chosen: 0.1269

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Sft Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.09 0.2141 400 1.1010 1.3681 -1.3477 -1.4855 0.5586 0.1378 -1.4855 -1.3477 0.3207 0.2350
1.0764 0.4282 800 1.0739 1.3759 -1.3603 -1.5873 0.5823 0.2270 -1.5873 -1.3603 0.3806 0.2884
1.077 0.6422 1200 1.0591 1.3822 -1.3685 -1.6704 0.5935 0.3019 -1.6704 -1.3685 0.3589 0.2649
1.0489 0.8563 1600 1.0555 1.3767 -1.3518 -1.6477 0.5905 0.2959 -1.6477 -1.3518 0.4297 0.3293
1.1366 1.0704 2000 1.0496 1.3798 -1.3555 -1.7040 0.5987 0.3484 -1.7040 -1.3555 0.3416 0.2453
1.0133 1.2845 2400 1.0461 1.3864 -1.3639 -1.7321 0.6053 0.3682 -1.7321 -1.3639 0.3701 0.2708
1.1144 1.4986 2800 1.0443 1.3887 -1.3652 -1.7447 0.6105 0.3794 -1.7447 -1.3652 0.2150 0.1278
1.0196 1.7127 3200 1.0449 1.3841 -1.3615 -1.7338 0.6142 0.3723 -1.7338 -1.3615 0.1872 0.1007
1.0023 1.9267 3600 1.0405 1.3927 -1.3767 -1.7830 0.6120 0.4063 -1.7830 -1.3767 0.2211 0.1322
0.9654 2.1408 4000 1.0418 1.3967 -1.3910 -1.8183 0.6180 0.4273 -1.8183 -1.3910 0.2405 0.1482
0.9676 2.3549 4400 1.0418 1.4054 -1.4061 -1.8540 0.6231 0.4479 -1.8540 -1.4061 0.2064 0.1158
0.9789 2.5690 4800 1.0420 1.4009 -1.3974 -1.8380 0.6142 0.4406 -1.8380 -1.3974 0.1887 0.0996
1.0003 2.7831 5200 1.0413 1.4027 -1.3986 -1.8438 0.6187 0.4452 -1.8438 -1.3986 0.2046 0.1137
0.9909 2.9972 5600 1.0416 1.4031 -1.3990 -1.8440 0.6157 0.4450 -1.8440 -1.3990 0.2187 0.1269

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1