qwen_uncCPO_entropy / README.md
yakazimir's picture
End of training
eabe967 verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_uncCPO_entropy
    results: []

qwen_uncCPO_entropy

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Rewards/chosen: -46.3149
  • Rewards/rejected: -47.3422
  • Rewards/accuracies: 0.5616
  • Rewards/margins: 1.0272
  • Logps/rejected: -47.3422
  • Logps/chosen: -46.3149
  • Logits/rejected: 7.3215
  • Logits/chosen: 7.6457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0 0.2141 400 0.0001 -31.9619 -33.7423 0.5660 1.7804 -33.7423 -31.9619 4.6072 4.6195
0.0 0.4282 800 0.0000 -39.5193 -40.9236 0.5593 1.4042 -40.9236 -39.5193 6.2657 6.4289
0.0008 0.6422 1200 0.0000 -39.2251 -40.6025 0.5542 1.3774 -40.6025 -39.2251 6.1312 6.2908
0.0 0.8563 1600 0.0000 -41.1464 -42.5420 0.5638 1.3956 -42.5420 -41.1464 6.3830 6.5549
0.0 1.0704 2000 0.0000 -43.4369 -44.6769 0.5734 1.2400 -44.6769 -43.4369 6.8661 7.0992
0.0 1.2845 2400 0.0000 -43.9619 -45.1746 0.5697 1.2127 -45.1746 -43.9619 6.9058 7.1560
0.0 1.4986 2800 0.0000 -44.1897 -45.3701 0.5645 1.1803 -45.3701 -44.1897 6.8977 7.1567
0.0 1.7127 3200 0.0000 -44.9141 -46.0263 0.5660 1.1122 -46.0263 -44.9141 7.0833 7.3687
0.0 1.9267 3600 0.0000 -45.5997 -46.6466 0.5645 1.0470 -46.6466 -45.5997 7.1427 7.4593
0.0 2.1408 4000 0.0000 -45.8198 -46.8818 0.5601 1.0620 -46.8818 -45.8198 7.2832 7.5923
0.0 2.3549 4400 0.0000 -45.8900 -46.9389 0.5653 1.0489 -46.9389 -45.8900 7.2655 7.5788
0.0 2.5690 4800 0.0000 -45.9866 -47.0244 0.5623 1.0378 -47.0244 -45.9866 7.2594 7.5758
0.0 2.7831 5200 0.0000 -45.8574 -46.9081 0.5623 1.0507 -46.9081 -45.8574 7.2536 7.5634
0.0 2.9972 5600 0.0000 -46.3149 -47.3422 0.5616 1.0272 -47.3422 -46.3149 7.3215 7.6457

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1