yaojialzc's picture
Update README.md
a5d4d9e verified
|
raw
history blame
2.36 kB
metadata
license: apache-2.0
language:
  - en
  - zh

image/webp

Gigi 是使用最先进的 Llama-3-8B-Instruct 在超过130万条经过筛选的高质量中英双语语料上进行精调,它能更好地处理各种下游任务,并为您提供高质量的中英双语结果。我们在训练中加入了包含Hermes、glaive-function-calling等高质量的指令精调数据,以及大量使用GPT3.5翻译的GPT4数据,Gigi能很好的在中英双语上满足您的需求。

Gigi-Llama-3-8B-zh

Gigi-Llama-3-8B-zh 是 Gigi 系列的第一个模型,在Hermes、glaive-function-calling、refgpt_fact_v2数据集以及一部分使用GPT3.5翻译成的中文数据上训练,同时改进了模型在中英文上的行为,还加入了COIG-CQIA、alpaca-gpt4-data-zh等中文数据集进一步增强中文能力。

How to use

Gigi-Llama-3-8B-zh 遵循 Llama-3-8B-Instruct 的对话模板,pad token 遵循 Axolotl 的建议使用 <|end_of_text|>

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>

{{ user_msg_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{{ model_answer_1 }}<|eot_id|>

您可以使用下面代码加载模型推理,对于更高效的推理建议使用vLLM,我们随后会退出模型具体性能,并很快推出更大参数和性能更好的精调版本。

import transformers
import torch

model_id = "yaojialzc/Gigi-Llama-3-zh"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "你是谁?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])