|
--- |
|
tags: |
|
- BERT |
|
- Text Classification |
|
- relation |
|
language: Arabic |
|
license: mit |
|
datasets: |
|
- ACE2005 |
|
--- |
|
|
|
# Arabic Relation Extraction Model |
|
- [Github repo](https://github.com/edchengg/GigaBERT) |
|
- Relation Extraction model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English). |
|
- ACE2005 Training data: Arabic |
|
- [Relation tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/arabic-relations-guidelines-v6.5.pdf) including: Physical, Part-whole, Personal-Social, ORG-Affiliation, Agent-Artifact, Gen-Affiliation |
|
|
|
## Hyperparameters |
|
- learning_rate=2e-5 |
|
- num_train_epochs=10 |
|
- weight_decay=0.01 |
|
|
|
## ACE2005 Evaluation results (F1) |
|
| Language | Arabic | |
|
|:----:|:-----------:| |
|
| | 89.4 | |
|
|
|
## How to use |
|
Workflow of a relation extraction model: |
|
1. Input --> NER model --> Entities |
|
2. Input sentence + Entity 1 + Entity 2 --> Relation Classification Model --> Relation Type |
|
|
|
```python |
|
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AuotoModelForSequenceClassification |
|
|
|
>>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace") |
|
>>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace") |
|
>>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) |
|
|
|
>>> re_model = AutoModelForSequenceClassification.from_pretrained("ychenNLP/arabic-relation-extraction") |
|
>>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction") |
|
>>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer) |
|
|
|
def process_ner_output(entity_mention, inputs): |
|
re_input = [] |
|
for idx1 in range(len(entity_mention) - 1): |
|
for idx2 in range(idx1 + 1, len(entity_mention)): |
|
ent_1 = entity_mention[idx1] |
|
ent_2 = entity_mention[idx2] |
|
|
|
ent_1_type = ent_1['entity_group'] |
|
ent_2_type = ent_2['entity_group'] |
|
ent_1_s = ent_1['start'] |
|
ent_1_e = ent_1['end'] |
|
ent_2_s = ent_2['start'] |
|
ent_2_e = ent_2['end'] |
|
new_re_input = "" |
|
for c_idx, c in enumerate(inputs): |
|
if c_idx == ent_1_s: |
|
new_re_input += "<{}>".format(ent_1_type) |
|
elif c_idx == ent_1_e: |
|
new_re_input += "</{}>".format(ent_1_type) |
|
elif c_idx == ent_2_s: |
|
new_re_input += "<{}>".format(ent_2_type) |
|
elif c_idx == ent_2_e: |
|
new_re_input += "</{}>".format(ent_2_type) |
|
new_re_input += c |
|
re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": inputs}) |
|
return re_input |
|
|
|
def post_process_re_output(re_output, re_input, ner_output): |
|
final_output = [] |
|
for idx, out in enumerate(re_output): |
|
if out["label"] != 'O': |
|
tmp = re_input[idx] |
|
tmp['relation_type'] = out |
|
tmp.pop('re_input', None) |
|
final_output.append(tmp) |
|
|
|
template = {"input": re_input["input"], |
|
"entity": ner_output, |
|
"relation": final_output} |
|
|
|
return template |
|
|
|
>>> input = "Hugging face is a French company in New york." |
|
>>> output = ner_pip(input) # inference NER tags |
|
|
|
>>> re_input = process_ner_output(output, input) # prepare a pair of entity and predict relation type |
|
|
|
>>> re_output = [] |
|
>>> for idx in range(len(re_input)): |
|
>>> tmp_re_output = re_pip(re_input[idx]["re_input"]) # for each pair of entity, predict relation |
|
>>> re_output.append(tmp_re_output) |
|
|
|
|
|
|
|
>>> re_ner_output = post_process_re_output(re_output) # post process NER and relation predictions |
|
>>> print("Sentence: ",re_ner_output["input"]) |
|
>>> print("Entity: ", re_ner_output["entity"]) |
|
>>> print("Relation: ", re_ner_output["relation"]) |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@inproceedings{lan2020gigabert, |
|
author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, |
|
title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic}, |
|
booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, |
|
year = {2020} |
|
} |
|
``` |
|
|