|
--- |
|
tags: |
|
- BERT |
|
- Text Classification |
|
- relation |
|
language: |
|
- ar |
|
- en |
|
license: mit |
|
datasets: |
|
- ACE2005 |
|
--- |
|
|
|
# Arabic Relation Extraction Model |
|
- [Github repo](https://github.com/edchengg/GigaBERT) |
|
- Relation Extraction model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English). |
|
- Model detail: mark two entities in the sentence with special markers (e.g., ```XXXX <PER> entity1 </PER> XXXXXXX <ORG> entity2 </ORG> XXXXX```). Then we use the BERT [CLS] representation to make a prediction. |
|
- ACE2005 Training data: Arabic |
|
- [Relation tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/arabic-relations-guidelines-v6.5.pdf) including: Physical, Part-whole, Personal-Social, ORG-Affiliation, Agent-Artifact, Gen-Affiliation |
|
## Hyperparameters |
|
- learning_rate=2e-5 |
|
- num_train_epochs=10 |
|
- weight_decay=0.01 |
|
|
|
|
|
## How to use |
|
Workflow of a relation extraction model: |
|
1. Input --> NER model --> Entities |
|
2. Input sentence + Entity 1 + Entity 2 --> Relation Classification Model --> Relation Type |
|
|
|
```python |
|
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AuotoModelForSequenceClassification |
|
|
|
>>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace") |
|
>>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace") |
|
>>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) |
|
|
|
>>> re_model = AutoModelForSequenceClassification.from_pretrained("ychenNLP/arabic-relation-extraction") |
|
>>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction") |
|
>>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer) |
|
|
|
def process_ner_output(entity_mention, inputs): |
|
re_input = [] |
|
for idx1 in range(len(entity_mention) - 1): |
|
for idx2 in range(idx1 + 1, len(entity_mention)): |
|
ent_1 = entity_mention[idx1] |
|
ent_2 = entity_mention[idx2] |
|
|
|
ent_1_type = ent_1['entity_group'] |
|
ent_2_type = ent_2['entity_group'] |
|
ent_1_s = ent_1['start'] |
|
ent_1_e = ent_1['end'] |
|
ent_2_s = ent_2['start'] |
|
ent_2_e = ent_2['end'] |
|
new_re_input = "" |
|
for c_idx, c in enumerate(inputs): |
|
if c_idx == ent_1_s: |
|
new_re_input += "<{}>".format(ent_1_type) |
|
elif c_idx == ent_1_e: |
|
new_re_input += "</{}>".format(ent_1_type) |
|
elif c_idx == ent_2_s: |
|
new_re_input += "<{}>".format(ent_2_type) |
|
elif c_idx == ent_2_e: |
|
new_re_input += "</{}>".format(ent_2_type) |
|
new_re_input += c |
|
re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": inputs}) |
|
return re_input |
|
|
|
def post_process_re_output(re_output, text_input, ner_output): |
|
final_output = [] |
|
for idx, out in enumerate(re_output): |
|
if out["label"] != 'O': |
|
tmp = re_input[idx] |
|
tmp['relation_type'] = out |
|
tmp.pop('re_input', None) |
|
final_output.append(tmp) |
|
|
|
template = {"input": text_input, |
|
"entity": ner_output, |
|
"relation": final_output} |
|
|
|
return template |
|
|
|
text_input = """ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد.""" |
|
|
|
ner_output = ner_pip(text_input) # inference NER tags |
|
|
|
re_input = process_ner_output(ner_output, text_input) # prepare a pair of entity and predict relation type |
|
|
|
re_output = [] |
|
for idx in range(len(re_input)): |
|
tmp_re_output = re_pip(re_input[idx]["re_input"]) # for each pair of entity, predict relation |
|
re_output.append(tmp_re_output[0]) |
|
|
|
|
|
|
|
re_ner_output = post_process_re_output(re_output, text_input, ner_output) # post process NER and relation predictions |
|
print("Sentence: ",re_ner_output["input"]) |
|
print('====Entity====') |
|
for ent in re_ner_output["entity"]: |
|
print('{}--{}'.format(ent["word"], ent["entity_group"])) |
|
print('====Relation====') |
|
for rel in re_ner_output["relation"]: |
|
print('{}--{}:{}'.format(rel['arg1']['word'], rel['arg2']['word'], rel['relation_type']['label'])) |
|
|
|
Sentence: ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد. |
|
====Entity==== |
|
بايدن--PER |
|
قادة--PER |
|
الدول--GPE |
|
الناتو--ORG |
|
العاصمة--GPE |
|
الاسبانية--GPE |
|
مدريد--GPE |
|
====Relation==== |
|
قادة--الدول:ORG-AFF |
|
الدول--الناتو:ORG-AFF |
|
العاصمة--الاسبانية:PART-WHOLE |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@inproceedings{lan2020gigabert, |
|
author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan}, |
|
title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic}, |
|
booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)}, |
|
year = {2020} |
|
} |
|
``` |
|
|