Example
The model is by no means a state-of-the-art model, but nevertheless produces reasonable image captioning results. It was mainly fine-tuned as a proof-of-concept for the ๐ค FlaxVisionEncoderDecoder Framework.
The model can be used as follows:
import requests
from PIL import Image
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel
loc = "ydshieh/vit-gpt2-coco-en"
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc)
# We will verify our results on an image of cute cats
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
with Image.open(requests.get(url, stream=True).raw) as img:
pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values
def generate_step(pixel_values):
output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
preds = generate_step(pixel_values)
print(preds)
# should produce
# ['a cat laying on top of a couch next to another cat']
- Downloads last month
- 14
Inference API (serverless) does not yet support generic models for this pipeline type.