distilbert-base-uncased-wnut_17
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2938
- Precision: 0.5528
- Recall: 0.2039
- F1: 0.2979
- Accuracy: 0.9360
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.4316 | 1.0 | 0.0 | 0.0 | 0.9256 |
No log | 2.0 | 426 | 0.3608 | 1.0 | 0.0 | 0.0 | 0.9256 |
0.5303 | 3.0 | 639 | 0.3333 | 0.32 | 0.0074 | 0.0145 | 0.9265 |
0.5303 | 4.0 | 852 | 0.3202 | 0.3190 | 0.0343 | 0.0619 | 0.9287 |
0.1929 | 5.0 | 1065 | 0.3096 | 0.4331 | 0.1019 | 0.1650 | 0.9322 |
0.1929 | 6.0 | 1278 | 0.3013 | 0.4718 | 0.1474 | 0.2246 | 0.9336 |
0.1929 | 7.0 | 1491 | 0.3002 | 0.5335 | 0.1770 | 0.2658 | 0.9350 |
0.1726 | 8.0 | 1704 | 0.2983 | 0.5538 | 0.1909 | 0.2839 | 0.9356 |
0.1726 | 9.0 | 1917 | 0.2944 | 0.5505 | 0.2020 | 0.2956 | 0.9360 |
0.1607 | 10.0 | 2130 | 0.2938 | 0.5528 | 0.2039 | 0.2979 | 0.9360 |
Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for yefo-ufpe/distilbert-base-uncased-wnut_17
Base model
distilbert/distilbert-base-uncased