Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: augmxnt/shisa-base-7b-v1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

hub_model_id: yentinglin/shisa-7b-v1-sharegpt
hub_strategy: end

datasets:
  - path: NTQAI/sharegpt-clean-ja
    type: sharegpt
    conversation: chatml

chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./output/ja/sft/shisa-7b-v1/sharegpt/

sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: JA-LLM
wandb_entity:
wandb_watch:
wandb_name: sft-fft-sharegpt-clean-ja
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1 # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
learning_rate: 1e-5
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.00001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 5
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true

warmup_ratio: 0.02  # cannot use with warmup_steps
evals_per_epoch: 1
eval_table_size:
save_per_epoch: 1
save_total_limit: 1
debug:
deepspeed: deepspeed_configs/zero1.json # multi-gpu only
weight_decay: 0.001
fsdp:
fsdp_config:
special_tokens:

ddp_timeout: 180000

special_tokens:
  eos_token: "<|im_end|>"
tokens:
  - "<|im_start|>"

shisa-7b-v1-sharegpt

This model is a fine-tuned version of augmxnt/shisa-base-7b-v1 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 4

Training results

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
7.96B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yentinglin/shisa-7b-v1-sharegpt

Finetuned
(4)
this model