OndeviceAI-T5-v1
This model is a fine-tuned version of paust/pko-t5-large on the None dataset.
How to use
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import List
tokenizer = AutoTokenizer.from_pretrained("yeye776/OndeviceAI-T5-v1")
model = AutoModelForSeq2SeqLM.from_pretrained("yeye776/OndeviceAI-T5-v1")
prompt = "분류 및 인식해줘 :"
def prepare_input(question: str):
inputs = f"{prompt} {question}"
input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids
return input_ids
def inference(question: str) -> str:
input_data = prepare_input(question=question)
input_data = input_data.to(model.device)
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=1024)
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
return result
inference("안방 조명 켜줘")
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0007
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10
Training results
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.