yinde's picture
Update README.md
23fb3a5
|
raw
history blame
2.56 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fatimah_fake_news_bert
    results: []

fatimah_fake_news_bert

This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on Fake and real dataset on kaggle It achieves the following results on the evaluation set:

  • Loss: 0.0010
  • Accuracy: 0.9998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3298 0.06 200 0.0094 0.9987
0.0087 0.11 400 0.0091 0.9988
0.0126 0.17 600 0.0132 0.9965
0.0081 0.22 800 0.0100 0.9987
0.0132 0.28 1000 0.0086 0.9990
0.0131 0.33 1200 0.0070 0.9986
0.0086 0.39 1400 0.0079 0.9990
0.0041 0.45 1600 0.0057 0.9991
0.0069 0.5 1800 0.0083 0.9989
0.0052 0.56 2000 0.0043 0.9993
0.0 0.61 2200 0.0047 0.9993
0.003 0.67 2400 0.0052 0.9994
0.0126 0.72 2600 0.0028 0.9997
0.0047 0.78 2800 0.0018 0.9996
0.0 0.84 3000 0.0027 0.9996
0.0001 0.89 3200 0.0029 0.9996
0.0079 0.95 3400 0.0010 0.9998

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6