ylacombe's picture
ylacombe HF staff
Create README.md
a939f66
---
library_name: transformers
pipeline_tag: text-to-speech
tags:
- transformers.js
- mms
- vits
license: cc-by-nc-4.0
datasets:
- ylacombe/google-argentinian-spanish
language:
- es
---
## Model
This is a finetuned version of the [Spanish version](https://huggingface.co/facebook/mms-tts-spa) of Massively Multilingual Speech (MMS) models, which are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
It was trained in around **20 minutes** with as little as **80 to 150 samples**, on this [Argentinian Spanish dataset](https://huggingface.co/datasets/ylacombe/google-argentinian-spanish).
Training recipe available in this [github repository: **ylacombe/finetune-hf-vits**](https://github.com/ylacombe/finetune-hf-vits).
## Usage
### Transformers
```python
from transformers import pipeline
import scipy
model_id = "ylacombe/mms-spa-finetuned-argentinian-monospeaker"
synthesiser = pipeline("text-to-speech", model_id) # add device=0 if you want to use a GPU
speech = synthesiser("Hola, ¿cómo estás hoy?")
scipy.io.wavfile.write("finetuned_output.wav", rate=speech["sampling_rate"], data=speech["audio"])
```
### Transformers.js
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Generate Spanish speech with `ylacombe/mms-spa-finetuned-argentinian-monospeaker`.
```js
import { pipeline } from '@xenova/transformers';
// Create a text-to-speech pipeline
const synthesizer = await pipeline('text-to-speech', 'ylacombe/mms-spa-finetuned-argentinian-monospeaker', {
quantized: false, // Remove this line to use the quantized version (default)
});
// Generate speech
const output = await synthesizer('Hola, ¿cómo estás hoy?');
console.log(output);
// {
// audio: Float32Array(69888) [ ... ],
// sampling_rate: 16000
// }
```
Optionally, save the audio to a wav file (Node.js):
```js
import wavefile from 'wavefile';
import fs from 'fs';
const wav = new wavefile.WaveFile();
wav.fromScratch(1, output.sampling_rate, '32f', output.audio);
fs.writeFileSync('out.wav', wav.toBuffer());
```
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/6FvN6zFSHGeenWS2-H8xv.wav"></audio>