Quality Estimation for Machine Translation

This model is a fine-tuned version of answerdotai/ModernBERT-base on the ymoslem/tokenized-wmt-da-human-evaluation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss
0.0686 0.1004 1000 0.0712
0.0652 0.2007 2000 0.0687
0.0648 0.3011 3000 0.0623
0.0609 0.4015 4000 0.0600
0.0585 0.5019 5000 0.0603
0.0588 0.6022 6000 0.0589
0.0592 0.7026 7000 0.0581
0.0585 0.8030 8000 0.0574
0.0588 0.9033 9000 0.0572
0.0563 1.0037 10000 0.0571

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
150M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ymoslem/ModernBERT-base-qe-lr3e-04-v1

Finetuned
(220)
this model

Collection including ymoslem/ModernBERT-base-qe-lr3e-04-v1