ymoslem's picture
Update README.md
26aa258 verified
metadata
library_name: transformers
language:
  - multilingual
  - bn
  - cs
  - de
  - en
  - et
  - fi
  - fr
  - gu
  - ha
  - hi
  - is
  - ja
  - kk
  - km
  - lt
  - lv
  - pl
  - ps
  - ru
  - ta
  - tr
  - uk
  - xh
  - zh
  - zu
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - quality-estimation
  - regression
  - generated_from_trainer
datasets:
  - ymoslem/wmt-da-human-evaluation
model-index:
  - name: Quality Estimation for Machine Translation
    results:
      - task:
          type: regression
        dataset:
          name: ymoslem/wmt-da-human-evaluation-long-context
          type: QE
        metrics:
          - name: Pearson
            type: Pearson Correlation
            value: 0.2055
          - name: MAE
            type: Mean Absolute Error
            value: 0.2004
          - name: RMSE
            type: Root Mean Squared Error
            value: 0.2767
          - name: R-R2
            type: R-Squared
            value: -1.6745
      - task:
          type: regression
        dataset:
          name: ymoslem/wmt-da-human-evaluation
          type: QE
        metrics:
          - name: Pearson
            type: Pearson Correlation
            value: null
          - name: MAE
            type: Mean Absolute Error
            value: null
          - name: RMSE
            type: Root Mean Squared Error
            value: null
          - name: R-R2
            type: R-Squared
            value: null
metrics:
  - pearsonr
  - mae
  - r_squared
new_version: ymoslem/ModernBERT-base-qe-v1

Quality Estimation for Machine Translation

This model is a fine-tuned version of answerdotai/ModernBERT-base on the ymoslem/wmt-da-human-evaluation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0561

Model description

This model is for reference-free, sentence level quality estimation (QE) of machine translation (MT) systems. The long-context / document-level model can be found at: ModernBERT-base-long-context-qe-v1, which is trained on a long-context / document-level QE dataset ymoslem/wmt-da-human-evaluation-long-context

Training and evaluation data

This model is trained on the sentence-level quality estimation dataset: ymoslem/wmt-da-human-evaluation

Training procedure

Training hyperparameters

This version of the model uses tokenizer.model_max_length=512. The model with full length of 8192 can be found here ymoslem/ModernBERT-base-qe-v1, which is still trained on a sentence-level QE dataset ymoslem/wmt-da-human-evaluation

The long-context / document-level model can be found at: ModernBERT-base-long-context-qe-v1, which is trained on a long-context / document-level QE dataset ymoslem/wmt-da-human-evaluation-long-context

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss
0.0656 0.1004 1000 0.0636
0.0643 0.2007 2000 0.0623
0.0592 0.3011 3000 0.0598
0.0596 0.4015 4000 0.0586
0.0575 0.5019 5000 0.0577
0.0574 0.6022 6000 0.0570
0.0584 0.7026 7000 0.0566
0.0574 0.8030 8000 0.0563
0.0565 0.9033 9000 0.0561
0.0557 1.0037 10000 0.0561

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0