ymoslem's picture
End of training
eb2f823 verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: Whisper Medium GA-EN Speech Translation
    results: []

Whisper Medium GA-EN Speech Translation

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6073
  • Bleu: 0.22
  • Chrf: 12.93
  • Wer: 104.3224

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Chrf Wer
4.698 0.11 100 4.6156 0.0 1.58 1852.0486
4.2397 0.22 200 4.0051 0.06 4.23 206.9338
3.8768 0.32 300 3.7864 0.18 5.21 97.9739
3.8755 0.43 400 3.6008 0.19 5.28 96.0378
3.529 0.54 500 3.5774 0.29 6.96 108.0144
3.32 0.65 600 3.5197 0.23 8.97 99.3697
3.3073 0.76 700 3.5056 0.49 9.43 104.0973
3.1893 0.86 800 3.5861 0.32 12.86 114.3629
3.0739 0.97 900 3.5003 0.6 12.1 101.3057
2.7718 1.08 1000 3.6073 0.22 12.93 104.3224

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2