metadata
license: apache-2.0
base_model: MariaK/distilhubert-finetuned-gtzan-v2
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-v2-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
distilhubert-finetuned-gtzan-v2-finetuned-gtzan
This model is a fine-tuned version of MariaK/distilhubert-finetuned-gtzan-v2 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5054
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.145 | 0.18 | 10 | 0.6024 | 0.85 |
0.117 | 0.35 | 20 | 0.4874 | 0.88 |
0.1236 | 0.53 | 30 | 0.6116 | 0.84 |
0.0977 | 0.71 | 40 | 0.5530 | 0.87 |
0.0664 | 0.88 | 50 | 0.5054 | 0.88 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2