Model Card for Model ID

Required Libraries and Their Versions

  • trl==0.12.2
  • transformers<4.47.0
  • tokenizers==0.21.0

Usage

results = []
system_text = "以下は、タスクを説明する指示です。要求を適切に満たす回答を**簡潔に**書いてください。回答の後ろに、回答の理由を**1文で**書いてください。"
for data in tqdm(datasets):

  input_text = data["input"]

  prompt = f"""
  {system_text}
  ### 指示
  {input_text}
  ### 応答
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)

  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input_text, "output": output})

Model Details

  • Model type: Transformer-based Language Model

Datasets

Instruction tuning

Language Dataset description
Japanese elyza/ELYZA-tasks-100 A manually constructed instruction dataset

License

Apache License, Version 2.0

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for yottan-wywy/llm-jp-3-13b-instruct-finetune_1217

Finetuned
(8)
this model

Dataset used to train yottan-wywy/llm-jp-3-13b-instruct-finetune_1217